1. Define the following terms:
a. Force
a push or pull acting on a body
b. Net Force

Sum of all forces acting on object
c. Balanced Forces

$$
\text { net force }=0
$$

d. Equilibrium
state of balanced forces (net force = 0)
e. Normal Force
perpendicular force a surface exert on object that's pressing on it
f. Free-Body Diagram
\rightarrow show all forces acting on object
g. Mass amt. of matter in object
h. Weight force of gravity pulling on a mass
i. Friction force that resists motion
j. Static Friction
G between 2 surf ores wot moving
k. Rolling Friction

$$
\begin{aligned}
& \text { C) what a sound surface moves over another } \\
& \text { Surface }
\end{aligned}
$$

1. Sliding Friction

$$
\rightarrow \text { between } 2 \text { surfaces moving past each } \begin{gathered}
\text { other }
\end{gathered}
$$

m. Air Friction
G of atmosphere against a surface
n. Viscous Friction

$$
G \text { of liquids against a surface }
$$

o. Vector Quantity
has size and direction
2. In the "Friction" lab, when the energy car and sled were launched on the level track, what was true of the values for acceleration for both?
negative
3. Why were the acceleration values as described in the previous question?

$$
\begin{aligned}
& \text { speed was decreasing } \\
& \text { (deceleration) }
\end{aligned}
$$

4. If an organism gains weight does it also gain mass?(ON EAR th)

$$
y=s
$$

5. What is the relationship between mass and weight? Use the graph from the "What is a Newton?" lab to help you answer the question.
strong

ω

6. The weight of an object depends upon 2 factors. What are they?

7. Mass
8. gravity strength
9. What is the formula for calculating weight?

$$
w=m g
$$

8. What is the SI unit of mass?

9. What is the SI unit of force?

$$
N=\text { newton }
$$

10. What is the SI unit of weight? N
11. What can change the speed and/or direction of an object?
force
12. If an object is at rest, what's true of the net force on the object?

$$
\text { net force }=
$$

13. What's also true about the acceleration of the object in the previous question?
14. If an object is moving in a straight line at constant speed, what's true of the net force on the object?

$$
\text { net force }=0
$$

15. What's also true about the acceleration of the object in the previous question?

$$
a=0
$$

16. What's the relationship between balanced forces and a net force of zero?
Same thing
17. Is force a vector quantity? Why or why not?
yes - has direction
18. Does mass change with location? Why or why not?
NO - amt. of mutter doesit change
19. Does weight change with location? Why or why not?
yes -tlc gravity strung th can change
20. Do all forces act through direct contact? If not, name a force that does not require direct contact to affect objects.
NO - gravity

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. If a cow has a mass of 300 kg , what is its weight on Earth?

$$
\omega=m g=(300 \mathrm{l} / \mathrm{g})(9.8 \mathrm{~N} / \mathrm{/g})=2940 \mathrm{~N} .
$$

2. If a human travels to Mars, and has a mass of 75 kg and a weight of 278 Newtons, what is the strength of gravity on Mars?

$$
g=\frac{\omega}{m}=\frac{278 \mathrm{~N}}{75 \mathrm{~kg}}=3.7
$$

3. If the strength of gravity on Saturn is $11.2 \mathrm{~N} / \mathrm{kg}$, and a pretzel has a mass of 0.01 kg , what is the weight of the pretzel on Saturn?
0.1

4. If the 1.00 cm flag of an energy car passes through a photo gate in 0.0725 seconds, what is the speed of the energy car?

5. If the speed of an energy car is measured at $140 \mathrm{~cm} / \mathrm{s}$ at one photo gate, and 0.60 seconds later has a speed of $110 \mathrm{~cm} / \mathrm{s}$, what is the acceleration of the energy car?

$$
\begin{aligned}
a=\frac{v_{f}-v_{i}}{t} & =\frac{110 \mathrm{~cm} / \mathrm{s}-140 \mathrm{~cm} / \mathrm{s}}{0.60 \mathrm{sec}} \\
& =-50 \mathrm{~cm} / \mathrm{s} / \mathrm{s}
\end{aligned}
$$

