\qquad

DRAGON Genetics lab

INTRODUCTION

Students will work in pairs in the lab to produce a dragon from the random mixing of genetic traits. Each student will be a dragon parent. They will use a complete set of dragon chromosomes. The homologous chromosomes will be separated according to Mendel's law of Independent Assortment. The inheritance of the traits may be simple dominance, codominance, sex-linked, sex influenced, or sex-limited. Read the entire lab packet before answering the prelab.

PRE-LAB:

1. What does each popsicle stick represent:
2. Why does each popsicle stick chromosome have two sides with alleles:
3. If a chromosome has a letter on one side but the letter is missing on the other, what happened to the missing letter?
4. What trait is coded for by the gene with the symbol:

$$
\begin{aligned}
& \text { W? } \\
& X ? \\
& Y ?
\end{aligned}
$$

Teacher stamps or initials here when you're finished with the Pre-lab:

METHOD

Materials:

Chromosomes (represented by popsicle sticks)
One packet of Mom chromosomes, one packet of Dad chromosomes, colored pencils

Procedure:

1. After the teacher stamps the space above, have one partner gather the appropriate chromosomes packets from the supply table. Each partner will have five popsicle sticks (unless your parent dragon has a chromosomal mutation) -- one of each color of the autosomes, and one sex chromosome (either pink or blue). Each side of a stick represents a chromosome, and the two sides together represent a pair of homologous chromosomes.
2. Examine your dragon chromosomes, looking on both sides to see each of the alleles that make up the genotype for each gene locus. Note whether you are the mom (pink sex chromosome) or the dad (blue).
3. Read through page 2's description of the genome.
4. Each parent's genotype consists of the alleles on both chromosomes (i.e. both sides of the stick). Usually each parent will have two alleles for each gene. Write your genotypes in the appropriate table on page 3. Copy your partner's genotype. Notice that your parents may have chromosomal mutations (deletions, inversions, duplications, etc). See \#5 if you don't know how to write your alleles.
5. For each color autosome, and then for the sex chromosomes, each parent will randomly drop his or her stick on the table. The side of the stick that is up represents the chromosome that is passed on to the baby. Record your alleles in the appropriate tables on page 3. Copy your partner's alleles as well.

- If alleles are out of order pair up homologous alleles (e.g. A \& a), even if the chromosome gene sequences were altered (e.g. inverted)
- Leave blank spaces in the table if an allele was deleted.
- Add duplicated alleles to gametes (ex: " $Q Q$ " in sperm would indicated a duplicated Q allele in the father's yellow autosome).

6. The decoding chart on page 2 indicates the phenotypic effect of each gene on the baby. The trait produced by each pair of alleles should be recorded in the data chart. Remember that a CAPITAL letter is dominant over a small letter [recessive] unless the decoding chart indicates those traits are codominant, sex-influenced, or sex-limited.
The expression of a duplicated allele may be amplified (use your judgement about what makes sense).
If a parent gamete was missing an allele, the baby will express a single gamete inherited from the other parent.
7. Draw and color your dragon to produce a picture of the baby that accurately shows its characteristics. Be creative! (You may use the back of the packet or add a separate page.)
8. Answer the Discussion Questions. No further lab report or analysis is necessary.
\qquad
\qquad Date \qquad

DECODING THE DRAGON GENOME

Chromosome	Dominant genes	Recessive genes
Green Autosome	A．no chin spike B．nose spike C．three head flaps D．no visible ear hole E．［see $*$ below］	a．chin spike b．no nose spike c．four head flaps d．visible ear hole
$\overline{\text { Red Autosome }}$	F．long neck G．no back hump H．no back spikes I．long tail J．flat feet	f．short neck g．back hump h．back spikes i．short tail j．arched feet
Orange Autosome	K．red eyes L．spots on neck M．\quad see + below $]$ N．no fangs O．spots on back	k．yellow eyes 1．no spots on neck n．fangs o．no spots on back
Yellow Autosome	P．no spots on thigh Q．green body R small comb on head［see 畣 below］ S．［See below］ T．［See below］	p．spots on thigh q．purple body r．large comb on head［see 爱 below］

Sex Chromosomes	U．regular thigh	u．pointed thigh
	V．four toes	v．three toes
X Chromosome Only	W．no chest plate	W．no．tail spike
	Z．long arms	x．tail spike
	+ non－fire breather	z．short arms
Y chromosome only	Y．male sex	－fire breather

Codominant traits

＊E．eye pointed at each end
e．round eye
Ee．eye round at front only
S．Red spots
s．yellow spots
Ss．orange spots

Sex－influenced traits

+M ．wings
m ．no wings［dominant in presence of male hormone］
－T．no elbow spike
t．elbow spike［dominant in presence of male hormone］

Sex－limited traits

恩 R or r Only males have the comb on the head．

Dragon Family Genome

Our Baby (Named ______
Green Autosomes

	Genotypes		Alleles in		
	Mom	Dad	Egg	Sperm	\longrightarrow
A					
B					
C					
D					
E					

Red Autosomes

	Genotypes		Alleles in		Trait:	
	Mom	Dad	Egg	Sperm	\longrightarrow	Determines: Phenotype of the baby
F						
G						
H						
I						
J						

Orange Autosomes

	Genotypes		Alleles in		
	Mom	Dad	Egg	Sperm	\longrightarrow
K					
L					
M					
N					
O					

Yellow Autosomes

	Genotypes		Alleles in		
	Mom	Dad	Egg	Sperm	\longrightarrow
P					
Q					
R					
S					
T					

Sex Chromosomes

	Genotypes		Alleles in		
	Mom	Dad	Egg	Sperm	\longrightarrow
U					
V					
W					
X					
Z					
+					
Y					

For Lab Quiz: be able to answer the following questions. You may use this lab handout on the Lab Quiz.

1. What is Mendel's Law of Segregation?
2. How does dropping the sticks and transcribing only 1 side of the stick model this law?
3. What is Mendel's Principle of Independent Assortment?
4. How does dropping the green, orange and red sticks illustrate this principle?
5. The gene for fangs is recessive, yet most of the dragons have fangs. How can a recessive trait be so common?
6. What is a "sex-linked trait"?
7. Which traits are sex-linked? Refer to "Decoding the Dragon Genome."

7 a. What traits are more likely to be found in males? [Consider sex-linked, sex-influenced and sex-limited traits.]

8 a. What traits are more likely to be found in females?

Biology A

