IB Biology A

Curriculum Guide for Unit 5: DNA

Essential Ideas:

- The structure of DNA allows efficient storage of genetic information.
- Genetic information in DNA can be accurately copied and can be translated to make the proteins needed by the cell.
- Proteins have a very wide range of functions in living organisms.

Understandings:

- The nucleic acids DNA and RNA are polymers of nucleotides.
- DNA differs from RNA in the number of strands present, the base composition and the type of pentose.
- DNA is a double helix made of two antiparallel strands of nucleotides linked by hydrogen bonding between complementary base pairs.
- The replication of DNA is semi-conservative and depends on complementary base pairing.
- Helicase unwinds the double helix and separates the two strands by breaking hydrogen bonds.
- DNA polymerase links nucleotides together to form a new strand, using the pre-existing strand as a template.
- Transcription is the synthesis of mRNA copied from the DNA base sequences by RNA polymerase.
- Translation is the synthesis of polypeptides on ribosomes.
- The amino acid sequence of polypeptides is determined by mRNA according to the genetic code.
- Codons of three bases on mRNA correspond to the one amino acid in a polypeptide.
- Translation depends on complementary base pairing between codons on mRNA and anticodons on tRNA.
- Amino acids can be linked together in any sequence giving a huge range of possible polypeptides.
- The amino acid sequence of polypeptides is coded for by genes.
- Living organisms synthesize many different proteins with a wide range of functions.

Applications and Skills:

- Skill: Use a table of the genetic code to deduce which codon(s) corresponds to which amino acid.
- Skill: Use a table of mRNA codons and their corresponding amino acids to deduce the sequence of amino acids coded by a short mRNA strand of known base sequence.