1. A string vibrates at a frequency of 20 Hz . What is its period?

2. A speaker vibrates at a frequency of 200 Hz . What is its period?

3. A swing has a period of 10 seconds. What is its frequency? $/$
4. A pendulum has a period of 0.3 second. What is its frequency? $1 / 0.31+z=31+z$
5. You want to describe the harmonic motion of a swing. You find out that it take 2 seconds for the swing to complete one cycle. What is the swing's period and frequency?

$$
\text { per }=2 \sec \quad f=1 / 2 \mathrm{~Hz}
$$

6. An oscillator makes four vibrations in one second. What is its period and frequency?

$$
\text { FREQ }=4 \mathrm{~Hz} \quad \mathrm{per}=1 / 4 \mathrm{sec}
$$

7. A pendulum takes 0.5 second to complete one cycle. What is the pendulum's period and frequency?

$$
\text { per }=0.5 \mathrm{sec} \quad \text { FREQ }=1 / 0.5=2 \mathrm{~Hz}
$$

8. A pendulum takes 10 seconds to swing through 2 complete cycles.
a. How long does it take to complete one cycle? S \&ec
b. What is its period? 5 sec .
c. What is its frequency? $1 / 5 \quad 1 \dot{t}$.
9. An oscillator makes 360 vibrations in 3 minutes.
a. How many vibrations does it make in one minute? 120
b. How many vibrations does it make in one second? 2
c. What is its period in seconds?
$1 / \mathrm{Hz}$
2 Hz

$$
6 / 5 / 15-D_{0} \text { only } \# 1-4
$$

Hath Skills Wave Speed

$$
v=f \lambda
$$

(1. A wave with a frequency of 60.0 Hz travels through vulcanized rubber with a wavelength of 0.90 m . What is the speed of this wave?

$$
V=f \lambda=60.0 \mathrm{~Hz} \cdot 0.90 \mathrm{~m}=54 \mathrm{~m} / \mathrm{s}
$$

1. A wave with a frequency of 60.0 Hz travels through steel with a wave-
. What is the speed of this wave? length of 85.5 m . What is the speed of this wave?

$$
V=f \lambda=60.0 \mathrm{~Hz} \cdot 85.5 \mathrm{~m}=5130 \mathrm{~m} / \mathrm{s}
$$

(3.) The lowest pitch that the average human can hear has a frequency of 20.0 Hz . If sound with this frequency travels through air with a speed of $331 \mathrm{~m} / \mathrm{s}$, what is its wavelength?

$$
\lambda=\frac{v}{f}=\frac{331 \mathrm{~m} / \mathrm{s}}{20.0 \mathrm{~Hz}}=16.6 \mathrm{~m}
$$

4. One of the largest organ pipes is in the auditorium organ in the convention hall in Atlantic City, New Jersey. The pipe is 38.6 ft long and produces a sound with a wavelength of about 10.6 m . If the speed of sound in air is $346 \mathrm{~m} / \mathrm{s}$, what is the frequency of this sound?

$$
f=\frac{v}{\lambda}=\frac{346 \mathrm{~m} / \mathrm{s}}{10.6 \mathrm{~m}}=32.6 \mathrm{~Hz}
$$

5. A certain FM radio station broadcasts electromagnetic waves at a frequincy of $9.05 \times 10^{7} \mathrm{~Hz}$. These radio waves travel at a speed of $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the wavelength of these radio waves?
