1. Define the following terms:
a. Force
push or pull - 1 body exerts on another
b. Net Force

Sum of all forces acting on object
c. Balanced Forces

$$
\text { net }=0 \text {, in }
$$

d. Equilibrium forces asebalancel, net force $=0$
e. Normal Force
perpandicaler force object exerts on object that missing
f. Free-Body Diagram

Show all forces acting on object along w/ dir actions
g. Mass aunt. of matter an object has
h. Weight
(wt = mg) force of gravity pilling on obj)
i. Friction force that opposes motion
j. Static Friction

Gbetwen 2 surfaces not move past each other
k. Rolling Friction
G resists motion when a body rolls on a surface

1. Sliding Friction

Gresists motion of object moving acerose m. Air Friction opposition of atmosphere to motion n. Viscous Friction
resistance of a fluid to motion (flow)
o. vector Quantity
has magnitude + direction
2. In the "Friction" lab, when the energy car and sled were launched on the level track, what was true of the values for acceleration for both?
sled (sliding) had greater decal.
3. Why were the acceleration values as described in the previous question?

$$
\text { sliding friction }>\text { rollin friction }
$$

4. If an organism gains weight does it also gain mass?

Not vecreserily - Δ location can Δ wt.
5. What is the relationship between mass and weight? Use the graph from the "What is a Newton?" lab to help you answer the question.
directly proportional

6. The weight of an object depends upon 2 factors. What are they?

$$
\text { mass }+ \text { gravity strength }
$$

7. What is the formula for calculating weight?

$$
W=m \cdot g
$$

8. What is the SI unit of mass?

$$
\mathrm{kg}
$$

9. What is the SI unit of force?
Newton
10. What is the SI unit of weight?
Newton
11. What can change the speed and/or direction of an object?

12. If an object is at rest, what's true of the net force on the object?

$$
f_{\text {ret }}=0
$$

13. What's also true about the acceleration of the object in the previous question?

$$
\operatorname{acce} l=0
$$

14. If an object is moving in a straight line at constant speed, what's true of the net force on the object?

$$
F_{\text {net }}=0
$$

15. What's also true about the acceleration of the object in the previous question?

$$
\text { Accel }=0
$$

16. What's the relationship between balanced forces and a net force of zero?
Same
17. Is force a vector quantity? Why or why not?
yes - bc has direction
18. Does mass change with location? Why or why not?

$$
\begin{aligned}
& \text { NO - Ant. of witt hr } \\
& \text { dosswit charge }
\end{aligned}
$$

19. Does weight change with location? Why or why not?

$$
\begin{aligned}
& \text { kt -bk gravity strewth } \\
& \text { con change }
\end{aligned}
$$

20. Do all forces act through direct contact? If not, name a force that does not require direct contact to affect objects.
NO - gravity

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. If a cow has a mass of 300 kg , what is its weight on Earth?

$$
\begin{aligned}
& \omega=m g \\
& \omega=(300 / 5)\left(\left.9.8 \mathrm{~N}\right|_{\mathrm{k}}\right)=3000 \mathrm{~N}
\end{aligned}
$$

2. If a human travels to Mars, and has a mass of 75 kg and a weight of 278 Newtons, what is the strength of gravity on Mars?

$$
g=\omega / m=\frac{278 \mathrm{~N}}{75 \mathrm{~g}}=3.7 \mathrm{~N} / \mathrm{kg}
$$

3. If the strength of gravity on Saturn is $11.2 \mathrm{~N} / \mathrm{kg}$, and a pretzel has a mass of 0.01 kg , what is the weight of the pretzel on Saturn?

$$
\begin{aligned}
w & =m g \\
& =(0.01 / \mathrm{f})(11.2 \mathrm{~N} \mid \mathrm{V})=0.1 \mathrm{~N}
\end{aligned}
$$

4. If the 1.00 cm flag of an energy car passes through a photo gate in 0.0725 seconds, what is the speed of the energy car?

$$
s=d / t=\frac{1.00 \mathrm{~cm}}{0.0725 \mathrm{sec}}=13.8 \mathrm{~m} / \mathrm{s}
$$

5. If the speed of an energy car is measured at $140 \mathrm{~cm} / \mathrm{s}$ at one photo gate, and 0.60 seconds later has a speed of $110 \mathrm{~cm} / \mathrm{s}$, what is the acceleration of the energy car?

$$
\begin{aligned}
a=\frac{v_{f}-v_{i}}{t} & =\frac{110 \mathrm{~cm} / \mathrm{s}-140 \mathrm{~cm} / \mathrm{s}}{0.60 \mathrm{sec}} \\
& =\frac{-30 \mathrm{~cm} / \mathrm{s}}{0.60}=50 . \mathrm{cm} / \mathrm{s} / \mathrm{s} .
\end{aligned}
$$

