1. Define the following terms:
a. Energy
ability to do work
b. Work

$$
\begin{aligned}
& \text { Irk } \\
& \text { tromster energy - force applicd over distance } \\
& \text { inetic energy }
\end{aligned}
$$

c. Kinetic energy
energy of motion
d. Gravitational potential energy
energy of an elevated object
e. Elastic potential energy

$$
\begin{aligned}
& \text { storedenesgy-due to the de formation of elastic } \\
& \text { tical energy }
\end{aligned}
$$

f. Chemical energy
energy stored in molecrales
g. Power
rate of doing work
2. What is the SI unit of work and energy?
joule (S)
3. What is the original source of practically all of the energy on Earth?
Sun
4. What does the Law of Conservation of Energy state?
energy can't be destroyed or created,
only transferred or transformed
5. If a force is exerted on an object but it does not move, was work done? Why or why not?

$$
\begin{aligned}
& \text { ND - dist }=0 \\
& (\omega=f \cdot d)
\end{aligned}
$$

6. What is the formula for calculating gravitational potential energy? Define each variable.

$$
\begin{aligned}
& P E=m g h \\
& \quad m=\text { mass } \quad g=\text { gravity } \quad h=\text { height }
\end{aligned}
$$

7. If an object has 15 J of potential energy at a height of 50 cm , how much PE will it have if raised to a height of 100 cm ?

$$
305
$$

8. If the object in the previous question is dropped to the ground, how much kinetic energy will it have at the instant before it hits the ground, assuming air friction is so small that we can ignore it?

$$
30 \mathrm{~J}
$$

9. If one object has 200 J of PE when raised to a certain height, how much PE will a second object have at the same height if the second object has half the mass of the first object?

$$
100 \mathrm{~J} .
$$

$$
P E=m g h
$$

10. An energy car is elevated to the top of a ramp/ What is true about the energy of the car? has PE gnaw.
11. The energy car is released from the top of the ramp and rolls down the ramp. What is true about the energy of the car?

$$
P E_{g_{\text {IN }}} \rightarrow K E
$$

12. The energy car bounces off a rubber band at the bottom of the ramp and rolls back up the ramp $\$$.
a. How far will the car roll back up the ramp?
Not as high as release pt.
b. Why will it behave in this way (in terms of energy)?
13. What is the relationship between the work done to an energy car and the speed that it attains on the track?
direct - speed~work
14. A train traveling at $5 \mathrm{~m} / \mathrm{s}$ has $10,000 \mathrm{~J}$ of KE .
a. How much KE will it have if velocity increases to $10 \mathrm{~m} / \mathrm{s}$.)

$$
K_{E}=1 / m v^{2} \quad v=40,000 \mathrm{~J}
$$

b. Does doubling the velocity double the KE? Why or why not?

$$
2^{2}=4
$$

For any calculation that you show below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

15. A 25.0 . kg bicycle is moving at $7.0 \mathrm{~m} / \mathrm{s}$. How much kinetic energy does the bicycle have?
16. If the bicycle increases its speed to $14 . \mathrm{m} / \mathrm{s}$, how much kinetic energy does the bicycle now have?

$$
\left.K_{E}=1 / m v^{2}=\frac{1}{1}(25.05)(14 \mathrm{~m} / \mathrm{s})^{2}\right)=24505
$$

17. Does doubling the velocity of the bicycle double the kinetic energy of the bicycle? Why or why not?

$$
\text { No! - Quadruples - velocity }{ }^{2}\left(2^{2}\right)
$$

18. What happens to the kinetic energy of the bicycle when it is braked to a full stop?
becomes heat ebb brakes (frit tim)
19. If a $12 . \mathrm{kg}$ suitcase is lifted to a height of 2.0 m , how much potential energy does the rock now have?

$$
\begin{aligned}
P E=m g=(12.6 g)(9.8 \mathrm{n} / \mathrm{/g})(2.0 n) & =235.2 \mathrm{~J} \\
& =2405
\end{aligned}
$$

20. If the suitcase is dropped to the ground, how much kinetic energy does the suitcase have in the instant before it hits the floor? (assume air friction is so small that we can ignore it)

$$
240 \mathrm{~J}
$$

21. How much potential energy does the suitcase have when it has fallen halfway to the ground? (again, we can ignore air friction)

$$
120 \mathrm{~J}
$$

22. Fill in the blanks below.

$$
\begin{aligned}
& \text { Pe- }-20001 \quad \text { Ne- }-O J=200 \mathrm{~J} \\
& \text { Pe- } \mid 500 J \quad \mathrm{kE}-500 J=2000 \mathrm{~J}
\end{aligned}
$$昮 $=500 \mathrm{~J}$

$$
\mathrm{kr=}=1000 \text { 工 }
$$

$$
\begin{array}{cc}
\text { pe- } 5005 & \text { kex }-15005 ~ 5 ~
\end{array}
$$

$$
\mathrm{PB}=\frac{J J \quad \mathrm{KE}=2000 \mathrm{~J}}{}
$$

February 24, 2015

