1. Define the following terms:
a. Equilibrium

$$
\begin{aligned}
& \text { illinium } \\
& \text { rect }
\end{aligned}=0 \text {, balanced forces }
$$

b. Force
push or pull on object
c. Acceleration
change in velocity
d. Momentum
d. Momentum
$p=$ mass x velocity - "strength of motion"
e. Inertia
property of matter -resists changes in motion
f. Friction
force - resist motion
g. Direct relationship between variables as 1 var. \uparrow, other vas. q
h. Inverse relationship between variables
as 1 vas. \uparrow, other var. \downarrow
i. Strong relationship between variables
large change in 1 var,, large change in other var.
j. Weak relationship between variables large change in I Var., small change in other var.
contra variable
k. Control variable

Var. Kept constant
2. What does the $1^{\text {st }}$ Law of Motion state?

OBJ. In motion stay in motion, object © Rest stays rest mules outside force acts
3. What is the mathematical equation related to the $2^{\text {nd }}$ Law of Motion that relates force, mass and acceleration?

$$
F=M a \quad a=\frac{F}{m}
$$

4. What does the $2^{\text {nd }}$ Law of Motion state?
accel is dir prop. to force t inversely prop. to mass
5. What does the $3^{\text {rd }}$ Law of Motion state?
FOR Every Action, there is 㧱 ECMAL I apposite Reaction.
6. What must be true of the forces acting on objects if their motion is not changing?

$$
F_{\text {net }}=0 \text {, balculced }
$$

7. A train and a car collide. What is true about the forces that each vehicle exerts on the other?

8. In the collision described in the previous question, why are the forces as you described?
Are low ARE diffent, mass is diff.
9. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between force and acceleration?

10. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between mass and acceleration?

$$
a \sim \frac{1}{m}
$$

11. In the " $1{ }^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the force put onto the car and the speed that it attained?

$$
\text { greater force } \rightarrow \text { Higher speed }
$$

12. In the " 1 st and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the mass of the car and the speed that it attained?

$$
\text { greater mass } \rightarrow \text { laver speed }
$$

13. In the " 1 st and $2^{\text {nd }}$ Laws of Motion" lab, why did the car's speed change when the mass increased?

14. What is the SI unit of force?

$$
N=\text { Newton }
$$

15. If 3 times the force is applied to the same object, what will be true of its acceleration?

$$
3 \times \text { accel. }(a \sim F)
$$

16. The action force is "the rifle pushes the bullet forward." What is the reaction force?
the bullet pushes rifle backward
17. The action force is "the rocket pushes down on the exhaust gases." What is the reaction force?
the ex. gases push up ow rocket
18. An insect and a car windshield collide. If the windshield exerts a 2 N force on the bug, what is the force exerted by the bug on the car windshield?

$$
2 N
$$

19. In the " 3 rd Law of Motion" lab, what was true of the force that moved the cars apart?
STME whole time
20. In the " 3 rd Law of Motion lab, what was true of the speeds of each car when the masses were NOT equal?
speeds not EQual
21. If a rock has 10 times more mass than an apple, how will the inertia of each object compare?

$$
\begin{aligned}
& \text { rock -10x more inertia } \\
& \text { (Mass~inertia) }
\end{aligned}
$$

22. If a train has more inertia than a bicycle, what will be true about changing the motion of each object?
frain- harder to change motion
23. What is the mathematical equation that relates momentum, mass and velocity?

$$
\rho=M V \quad \text { momentum }=\operatorname{mass} \times v e l o l .
$$

24. If a train and a bicycle are moving at the same velocity, but the train has more mass than the bicycle, which has more momentum? Why?
train - more mass
25. If there are 2 identical bicycles, and one has twice the velocity of the other, which one has more momentum? Why?
faster bike - veloc. I
26. If there were no friction forces at all, and you threw a rock with a 10 N force, how much force would be required to keep it moving at constant velocity?

NO FORCE
27. Why is it that we almost never see objects in motion that stay in motion on Earth?

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. What is the momentum of a 30.6 kg bicycle moving at $14.2 \mathrm{~m} / \mathrm{s}$?

$$
p=m \cdot v=(30.6 \mathrm{k})(14.2 \mathrm{~m} / \mathrm{s})=435 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

2. If a rock has a mass of 18.5 kg and its momentum is $4,200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, what is the velocity of the rock?
3. A construction worker raises a wooden beam with a force of $200 . \mathrm{N}$ and accelerates it upward at a rate of $1.3 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the barbell?

4. How much force is needed to accelerate a 4.0 kg cat at a rate of $5.7 \mathrm{~m} / \mathrm{s}^{2}$?

$$
F=m a=(4.01 \mathrm{f})\left(5.7 \mathrm{~m} / \mathrm{s}^{2}\right)=23 \mathrm{~N}
$$

