Chapter 16-2: Evolution as Genetic Change

Essential Questions:

How does natural selection affect singlegene & polygenic traits?

What is genetic drift?

What are 5 conditions needed to maintain genetic equilibrium? Natural selection on single-gene traits
Can lead to changes in allele frequencies
Example: lizard: orange color allele could become less frequent

Natural selection on polygenic traits
Directional selection
Individuals at one end of the curve are more fit

Stabilizing selection Indivs. near the center of curve are more fit

Disruptive selection Indivs. @ high and low ends of curve are more fit

Genetic drift

 In small pops., indivs. that carry particular allele may leave more descendents just by chance

That allele can become more common in pop. over time w/out selection pressure

Founder effect Migration causes changes in allele frequency Natural selection not a factor

 founder effect: a few individuals from a population start a new population with a different allele frequency than the original population

 Evolution vs. genetic equilibrium
Hardy-Weinberg principle
Allele frequencies in a pop. will be constant unless 1 or more factors cause change
Random mating – rare

- Large population no genetic drift
- No movement in/out of the pop.
- No mutations
- No natural selection (all genotypes have equal chance of survival)