Chapter 4 Review Sheet
Integrated Science - Physics \& Engineering Design

Name \qquad Period \qquad

1. Define the following terms:
a. Speed

How quickly an object moves (RATE OF CHANGE of position)
b. Velocity

$$
\text { SPEED + DIRECTION OF OB } \mathrm{J} \text {. }
$$

c. Acceleration

RATE OF CHANGE OF VELOcity
d. Vector quantity

$$
\text { HAS Both SIZE + Di } \dot{R E} \text { cion }
$$

e. Free fall

OBT. W/ ONLY GRAVIty force Acting on it
f. Strong relationship between variables
large change in I variable causes a large CHIDE IN OTHER
g. Weak relationship between variables UAR.
LARGE CHANGE IN I VARIABLE CAUSES
A SMALL CIINBE in OF hER VARIABLE
2. What is the difference between average speed and instantaneous speed?

ANE SPEED = total Dist.
w st. sped $=$ speed 01 Total Tim
3. What is the difference between speed and velocity?
VEL. has DiRection
4. Refer to Figure 1:

a. What segments) of the graph show zero velocity?

$$
C-D
$$

b. What segments) of the graph show zero acceleration?

$$
A-B, C-D, E-F
$$

c. What segments) of the graph show negative acceleration?

$$
B-C
$$

d. What segments) of the graph show positive acceleration?
5. Refer to Figure 2:

a. Is the car accelerating? Why or why not?
YES - dir. dmasing
6. Refer to Figure 3:

Car 1

a. Is the car accelerating? Why or why not?

a. Is Ruth traveling at a constant velocity? Why or why not?

NO - speed chances
b. What is indicated about Ruth's motion between 10 and 20 MIN

O Velocity
c. During what time is Ruth moving the fastest?

$$
20-2 \mathrm{Smin}
$$

8. Refer to Figure 5:

a. Are the runners accelerating? Why or why not?
NO- constant speed
b. Which runner is moving fastest? How do you know?

$$
A \text { - slope steeper }
$$

c. How far has each runner gone in 100 seconds?

$$
A-600 \mathrm{~m} \quad B=425 \mathrm{~m}
$$

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

9. A bicyclist travels 30.0 km in 1.8 hours. What is the cyclist's average speed?

10. How much time would it take for the sound of thunder to travel 3,000 meters if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

11. A snail moves about 0.25 meters per minute. How many meters can the snail cover in 35 min ?

$$
d=5 \times t=0.25 \mathrm{~m} / \mathrm{min} \times 35 \mathrm{mgh}=8.8 \mathrm{~m}
$$

12. A motorcycle slows from $100 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. What is the acceleration of the motorcycle?

$$
a=\frac{v_{f}-v_{i}}{t}=\frac{10 \mathrm{~m} / \mathrm{s}-100 \mathrm{~m} / \mathrm{s}}{s_{\mathrm{sic}}}=\frac{-90 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=-20 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

13. A jet starts at rest and after 10 seconds is moving at $400 \mathrm{~m} / \mathrm{s}$. What is the

$$
q=\frac{a-v_{i}}{t}=\frac{400 . / 5-0}{10 \mathrm{sec}}=
$$

$$
m / s^{2}
$$

