Velocity is a term that refers to both speed and direction. For this worksheet we will assume that the objects are traveling in a straight line and so velocity and speed can be considered the same.

1. What is the momentum of a truck with a mass of $4,000 . \mathrm{kg}$ and a speed of $35 \mathrm{~m} / \mathrm{s}$? Express your answer in $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$.

$$
p=m v=(4,000 \mathrm{~kg})(35 \mathrm{~m} / \mathrm{s})=140,000 \mathrm{~g} \cdot \mathrm{~m} / \mathrm{s}
$$

2. What is the momentum of a car with a mass of $1,000 . \mathrm{kg}$ and a speed of $35 \mathrm{~m} / \mathrm{s}$. Express your answer in $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$.

$$
P=m v=(1000 \mathrm{~kg})(35 \mathrm{~m} / \mathrm{s})=35,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

3. An 8 -kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg $\cdot \mathrm{m} / \mathrm{s}$, how fast is it traveling?

$$
V=1 / m=
$$

4. A beach ball is rolling in a straight line toward you at a speed of $0.5 \mathrm{~m} / \mathrm{s}$. Its momentum is $0.25 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is the mass of the beach ball?

$$
m=p / v=\frac{0.25 \mathrm{gg} \cdot \mathrm{~h} / \mathrm{s}}{0.5 \mathrm{~d} / \mathrm{s}}=0.5 \mathrm{~kg}
$$

5. A 4,500 .-kilogram truck travels in a straight line at $10 . \mathrm{m} / \mathrm{s}$. What is its momentum?

$$
p=m v=(4), 500.1 \mathrm{~g})(10 . \mathrm{m} / \mathrm{s})=45,000 \mathrm{~g} \mathrm{~g} / \mathrm{s}
$$

6. A 1,500 --kilogram car is also traveling in a straight line. Its momentum is equal to that of the truck in the previous question. What is the velocity of the car?

$$
V=\frac{P}{m}=\frac{45,000 \mathrm{k} \cdot \mathrm{~m} / \mathrm{s}}{1,500 \mathrm{~kg}}=30 \mathrm{~m} / \mathrm{s}
$$

7. Which would take more forge to stop in 10 . seconds: an 8.0 -kilogram ball rolling in a straight line at a speed of $0.2 \mathrm{~m} / \mathrm{s}$ er a 4.0-kilogram ball rolling along the same path at a speed of 1.0 m / s ?

$$
\begin{aligned}
& p=m v=(8.0 \mathrm{k})(0.2 \mathrm{~m} / \mathrm{s})=2 \mathrm{~km} / \mathrm{s}) \\
& p=m v=(4.0 \mathrm{~m} / \mathrm{s})(1.0 \mathrm{~m} / \mathrm{s})=4.0 \mathrm{~g} \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

8. The momentum of a car traveling in a straight line at $25 \mathrm{~m} / \mathrm{s}$ is $24,500 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is the car's mass?

$$
m=P / v=\frac{24,500 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{25 \mathrm{~m} / \mathrm{s}}=980 \mathrm{lg}
$$

9. A 0.14 -kilogram baseball is thrown in a straight line at a velocity of $30 . \mathrm{m} / \mathrm{s}$. What is the momentum of the baseball?

$$
p=m v=(0.14 \mathrm{~g})(30 . \mathrm{m} / \mathrm{s})=4.2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

10. Another pitcher throws the same baseball in a straight line. Its momentum is $2.1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. What is the velocity of the ball?

$$
V=9 / \mathrm{m}=\frac{2.1 \mathrm{gm} / \mathrm{s}}{0.4 \mathrm{lg}}=15 \mathrm{~m} / \mathrm{s} .
$$

11. A 1-kilogram turtle crawls in a straight line at a speed of $0.01 \mathrm{~m} / \mathrm{s}$. What is the turtle's momentum?

$$
p=m v=(1 \mathrm{gg})(0.01 \mathrm{~m} / \mathrm{s})=0.01 \mathrm{gm} / \mathrm{s}
$$

