1. Define the following terms:
a. Equilibrium
net force $=0$
b. Force
push or pull, Needed to change motion
c. Acceleration
any charge in verity
d. Momentum xuelocity
e. Inertia
tendency of objects to resist change ion
f. Friction
force that resists motion
g. Direct relationship between variables
when 1 variable incuse, other variable
h. Inverse relationship between variables when I variable mereases, other dicreasus i. Strong relationship between variables
large change in 1 variable results in laze
j. Wear relationship between variables change in the Large change in I var, results in smack
k. Control variable C change in

Variable the is capstan throughout other
 mines an outsize acts.
3. What is the mathematical equation related to the $2^{\text {nd }}$ Law of Motion that relates force, mass and acceleration?

$$
a=F / m
$$

4. What does the $2^{\text {nd }}$ Law of Motion state?
acceleration is directly proportional to force + inversely proportunal to mass
5. What does the 3 rd Law of Motion state?

6. What must be true of the forces acting on objects if their motion is not changing?

$$
\text { net force }=0
$$

7. A train and a car collide. What is true about the forces that each vehicle exerts on the other?
EQUAL strength!
8. In the collision described in the previous question, why are the forces as you described?

9. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between force and acceleration?

10. What does the $2^{\text {nd }}$ Law of Motion state about the relationship between mass and acceleration?

11. In the " $1^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the force put onto the car and the speed that it attained?

12. In the " $1^{\text {st }}$ and $2^{\text {nd }}$ Laws of Motion" lab, what did you data show about the relationship between the mass of the car and the speed that it attained?

13. In the " 1 st and $2^{\text {nd }}$ Laws of Motion" lab, why did the car's speed change when the mass increased?
greater mereftia, therefore greater resistana to days monition
14. What is the SI unit of force?

15. If 3 times the force is applied to the same object, what will be true of its acceleration?

$$
3 x \text { grater }
$$

16. The action force is "the rifle pushes the bullet forward." What is the reaction force?
bullet pushes sift back
17. The action force is "the rocket pushes down on the exhaust gases." What is the reaction force?
ex. ares pushes up on rocket
18. An insect and a car windshield collide. If the windshield exerts a 2 N force on the bug, what is the force exerted by the bug on the car windshield?

$$
2 N
$$

19. In the " 3 rd Law of Motion" lab, what was true of the force that moved the cars apart?
EQuAL strength
20. In the " 3 rd Law of Motion lab, what was true of the speeds of each car when the masses were NOT equal?
speed of lugger mass car was lower
21. If a rock has 10 times more mass than an apple, how will the inertia of each object compare?

$$
\text { rock has } 10 x \text { inertia }
$$

22. If a train has more inertia than a bicycle, what will be true about changing the motion of each object?

23. What is the mathematical equation that relates momentum, mass and velocity?

$$
\rho=m v
$$

24. If a train and a bicycle are moving at the same velocity, but the train has more mass than the bicycle, which has more momentum? Why?
train - more mass
25. If there are 2 identical bicycles, and one has twice the velocity of the other, which one has more momentum? Why?
foster bike - higher veloce.
26. If there were no friction forces at all, and you threw a rock with a 10 N force, how much force would be required to keep it moving at constant velocity?

No force
27. Why is it that we almost never see objects in motion that stay in motion on Earth?

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. What is the momentum of a 30.6 kg bicycle moving at $14.2 \mathrm{~m} / \mathrm{s}$?

$$
\rho=m V=(30.6 \mathrm{fg}(14.2 \mathrm{~m} / \mathrm{s})=435 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

2. If a rock has a mass of 18.5 kg and its momentum is $4,200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, what is the velocity of the rock?

3. If a $70 . \mathrm{Kg}$ swimmer pushes off the wall with a force of 180 N , what will be the acceleration of the swimmer?

$$
a=F / \mathrm{m}=\frac{180 \mathrm{~N}}{70 \cdot \mathrm{gg}}=2.6 \mathrm{~N} / \mathrm{g}
$$

4. A construction worker raises a wooden beam with a force of $200 . \mathrm{N}$ and accelerates it upward at a rate of $1.3 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the barbell?
bean

$$
m=F_{a}=\frac{200 \cdot \mathrm{~N}}{1.3 \mathrm{~m} / \mathrm{s}^{2}}=150 \mathrm{~kg}
$$

5. How much force is needed to accelerate a 4.0 kg cat at a rate of $5.7 \mathrm{~m} / \mathrm{s}^{2}$?

$$
F=m a=(4.0 \mathrm{~kg})\left(5.7 \mathrm{~m} / \mathrm{s}^{2}\right)=23 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}
$$

