1. Define the following terms:
a. Force

$$
\text { push or pull that } 1 \text { body exerts on om other }
$$

b. Net Force

Sum of all fores acting on object
c. Balanced Forces

$$
\text { Net force }=0
$$

d. Equilibrium

$$
\begin{aligned}
& \text { d. Equilibrium } \text { Net force }=0 \text { - wothon not } \\
& \text { e. Normal Force }
\end{aligned}
$$

perpendicular force of surface \rightarrow object pressing on it
f. Free-Body Diagram
diagrain shows all forces acting on oct
g. Mass -
ament of matter ar objects has
h. Weight
force of gravity palling on Mass
i. Friction
fire that resist motion
j. Static Friction

$$
\begin{aligned}
& \text { static riciction } \\
& \text { Friction detweennobjects that are not moving } \\
& \hline
\end{aligned}
$$

k. Rolling Friction
force that resists motion of rolling objects

1. Sliding Friction

$$
\begin{aligned}
& \text { force that resists motion of } 2 \text { oppects } \\
& \text { moving over each offer } \\
& \text { mir Friction }
\end{aligned}
$$

$$
\begin{aligned}
& \text { friction force when object disrupts air } \\
& \text { flow }
\end{aligned}
$$

n. Viscous Friction
friction of object moving thing water
o. Vector Quantity
Variable his size + direction
2. In the "Friction" lab, when the energy car and sled were launched on the level track, what was true of the values for acceleration for both?
negative!
3. Why were the acceleration values as described in the previous question?
decelerating - slowing down
4. If an organism gains weight does it also gain mass?

$$
N E S 1
$$

5. What is the relationship between mass and weight? Use the graph from the "What is a Newton?" lab to help you answer the question.

6. The weight of an object depends upon 2 factors. What are they?

- Mass +
- gravity!

7. What is the formula for calculating weight?

$$
u=m \times q
$$

8. What is the SI unit of mass?

9. What is the SI unit of force?
10. What is the SI unit of weight?

11. What can change the speed and/or direction of an object?

$$
\operatorname{tORCE}
$$

12. If an object is at rest, what's true of the net force on the object?

$$
\text { nefforce }=C
$$

13. What's also true about the acceleration of the object in the previous question?

$$
\text { accel }=0
$$

14. If an object is moving in a straight line at constant speed, what's true of the net force on the object?

$$
\text { net force }=0
$$

15. What's also true about the acceleration of the object in the previous question?

$$
\operatorname{accel}=0
$$

16. What's the relationship between balanced forces and a net force of zero?
Same thing
17. Is force a vector quantity? Why or why not?
yes - has direction
18. Does mass change with location? Why or why not?

No - amt. of matter in
you dosn't change
19. Does weight change with location? Why or why not?
YES - gravity strength change
20. Do all forces act through direct contact? If not, name a force that does not require direct contact to affect objects.
No -gravity

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

1. If a cow has a mass of 300 kg , what is its weight on Earth?

$$
\omega=\mathrm{mg}=3000 \mathrm{lg}(1.8 \mathrm{NN} / \mathrm{l} \mathrm{~g}=3,300 \mathrm{~N}
$$

2. If a human travels to Mars, and has a mass of 75 kg and a weight of 278 Newtons, what is the strength of gravity on Mars?

$$
g=\frac{\omega}{m}=\frac{278 \mathrm{~N}}{75 \mathrm{~g}}=
$$

3. If the strength of gravity on Saturn is $11.2 \mathrm{~N} / \mathrm{kg}$, and a pretzel has a mass of 0.01 kg , what is the weight of the pretzel on Saturn?

$$
W=m g=0.01 \mathrm{~kg} \times 11.2 \mathrm{~N} / \mathrm{kg}=0.1 \mathrm{~N} .
$$

4. If the 1.00 cm flag of an energy car passes through a photo gate in 0.0725 seconds, what is the speed of the energy car?

$$
s=d / t=\frac{1.00 \mathrm{~cm}}{0.0725 \mathrm{~s}}=13.8 \mathrm{~cm} / \mathrm{s}
$$

5. If the speed of an energy car is measured at $140 \mathrm{~cm} / \mathrm{s}$ at one photo gate, and 0.60 seconds later has a speed of $110 \mathrm{~cm} / \mathrm{s}$, what is the acceleration of the energy car?

$$
\begin{aligned}
a=\frac{v_{f}}{}-V_{i} & =\frac{110 \mathrm{~cm} / \mathrm{s}-140 \mathrm{~cm} / \mathrm{s}}{0.60 \mathrm{~s}} \\
& =\frac{-30 \mathrm{~cm} / \mathrm{s}}{0.60 \mathrm{sec}}=-50 . \mathrm{cm} / \mathrm{s} / \mathrm{s} .
\end{aligned}
$$

