Chapter 4 Review Sheet
Integrated Science - Physics \& Engineering Design
Name
\qquad Period \qquad

1. Define the following terms:
a. Speed

How quickly something moves
b. Velocity
c. Acceleration
RATE Of Chan be of VElocity
d. Vector quantity VARIABIE that HAB Both sIzE + DIRECTION e. Gree fall ty is only force Acting on object
f. Strong relationship between variables
a large change in 1 variable causes
a large chime in other var.
g. Weak relationship between variables
a large change in 1 variable causes
A sump ching in other VAR.
2. What is the difference between average speed and instantaneous speed?

$$
\begin{aligned}
& \text { NE. SpEED }=\text { DaK DIST. /TOiL ThE } \\
& \text { wast speed = Mass. velocity e } 3 \text { instate }
\end{aligned}
$$

3. What is the difference between speed and velocity?
velocity Hs Direction
4. Refer to Figure 1:

a. What segment(s) of the graph show zero velocity?

$$
C \sim D
$$

b. What segments) of the graph show zero acceleration?

$$
A-B+E-F+C-D
$$

c. What segments) of the graph show negative acceleration?

$$
B-C
$$

d. What segments) of the graph show positive acceleration?

$$
0-\lambda+D-E
$$

5. Refer to Figure 2:

Car 1

a. Is the car accelerating? Why or why not?
YES - changing Direction
6. Refer to Figure 3:

a. Is the car accelerating? Why or why not?
YES - Slowins Down

a. Is Ruth traveling at a constant velocity? Why or why not?

Min
b. What is indicated about Ruth's motion between 10 and 20 seconds 2

c. During what time is Ruth moving the fastest?

$$
20.25 \mathrm{~min} \text {. }- \text { IE PASt }
$$

8. Refer to Figure 5:

Position vs. Time for Two Runners

a. Are the runners accelerating? Why or why not?

$$
\begin{aligned}
& \text { NO - striticlet lias } \\
& =\text { cost. speed }
\end{aligned}
$$

b. Which runner is moving fastest? How do you know?

$$
A=\text { stepper slope }
$$

c. How far has each runner gone in 100 seconds?

$$
A=600 \mathrm{~m} B=400 \mathrm{~m}
$$

For each problem below, carry out these steps:

- Write the formula that you will use to solve the problem
- Re-write the formula, substituting known values with units
- Write the answer using the proper unit
- Check you answer for the proper number of significant figures
- Check you work for accuracy

9. A bicyclist travels 30.0 km in 1.8 hours. What is the cyclist's average speed?

$$
s=d / t=30.0 \mathrm{~km} / 1.8 \mathrm{hr}=17 \mathrm{~km} / \mathrm{hr}
$$

10. How much time would it take for the sound of thunder to travel 3,000 meters if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?

11. A snail moves about 0.25 meters per minute. How many meters can the snail cover in 35 min ?

$$
d=s \times t=0.25 \mathrm{~m} / \mathrm{min} \times 35 \mathrm{~min}=8.8 \mathrm{~m}
$$

12. A motorcycle slows from $100 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. What is the acceleration of the motorcycle?

$$
a=\frac{v_{s}-v_{i}}{t}=\frac{10 \mathrm{n} / \mathrm{s}-100 \mathrm{~m} / \mathrm{s}=\frac{90 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}} \mathrm{~s}}{5_{\mathrm{s}}}=-20 \mathrm{n} / \mathrm{s} / \mathrm{s}
$$

13. A jet starts at rest and after 10 seconds is moving at $400 \mathrm{~m} / \mathrm{s}$. What is the acceleration of the jet?

$$
\begin{aligned}
a=\frac{v_{f}-v_{i}}{t} & =\frac{400 \mathrm{~m} / \mathrm{s}-c}{10 \mathrm{~s}} \\
& =40 \mathrm{~m} / \mathrm{s} / \mathrm{s}
\end{aligned}
$$

