

Alanine

Cysteine

- monomers = amino acids \rightarrow enzymes, etc .
- polymer $=$ PRotein contort chem RUNS. etr.etu.

$$
\begin{aligned}
& \text { Nucleic acids } \\
& \Rightarrow \text { DNA } \\
& \text { monomer }=\text { nucleotides } \\
& \text { polymer) }
\end{aligned}
$$

$\mathrm{pH}_{-\log }\left[\mathrm{H}^{+}\right]$

- acid $=\left[\mathrm{H}^{+}\right]$in solution \rightarrow pure $\mathrm{H}_{2} \mathrm{O}$
pH O-6.9
$\left[\mathrm{H}^{+}\right]$in pure $\mathrm{H}_{2} \mathrm{O}=7$
-base- $\left[\mathrm{H}^{+}\right]$in solution $<$ pure $\mathrm{H}_{2} \mathrm{O}$

 loox mose [14] eptis themptII.

$\mathrm{pH}+$ en ayme function - optimal range of pH
hydrophilic - form Ht^{t} bonds
$\omega / \mathrm{H}_{2} \mathrm{O}$
ex: NaCl dissolves in)
polar
hydrophobiz-dossit form Ht^{t} bonalsw)
ex: lipids

April 10, 2014

