oThe acceleration caused by a net force is directly proportional to the force and inversely proportional to the mass.

NEWTON'S SECOND LAW

Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)-\boldsymbol{a}=\frac{\boldsymbol{F}-\operatorname{Force}(\mathrm{N})}{\boldsymbol{m}-\operatorname{Mass}(\mathrm{kg})}$

- Force is directly proportional to acceleration.

What it means to say
"Acceleration is proportional to force."

- Acceleration is inversely proportional to mass.

An object with twice the mass will have half the acceleration if the same force is applied.

The same force exerted on a larger mass produces a correspondingly smaller acceleration.

- Acceleration is always in the same direction as the net force.

- Formula for acceleration
- $a=F / m$

- Formula for force
- $\mathrm{F}=(\mathrm{m})(\mathrm{a})$
- Formula for mass
- $\mathrm{m}=\mathrm{F} / \mathrm{a}$
- Just give the equation
- A boy gets pushed on a sled with a force of ___ N. The boy and the sled together have a mass of __ kg. Ignoring friction, what is the acceleration of the boy on the sled?
$\circ \mathrm{a}=\mathrm{F} / \mathrm{m}$

- A boy gets pushed on a sled with a force of 120 N . The boy and the sled together have a mass of 60 kg . Ignoring friction, what is the acceleration of the boy on the sled?
- $\mathrm{a}=\mathrm{F} / \mathrm{m}$
- $\mathrm{a}=120 \mathrm{~N} / 60 \mathrm{~kg}$
- $a=2 \mathrm{~m} / \mathrm{s}^{2}$

- Just give the equation
- A rock with a mass of ___ kg is accelerating at the rate of ___ $\mathrm{m} / \mathrm{s}^{2}$ How much force does it have?
- $\mathrm{F}=(\mathrm{m})(\mathrm{a})$
- A rock with a mass of 500 kg is accelerating at the rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ How much force does it have?
- $\mathrm{F}=(\mathrm{m})(\mathrm{a})$
- $\mathrm{F}=(500 \mathrm{~kg})\left(2 \mathrm{~m} / \mathrm{s}^{2}\right.$,
- $\mathrm{F}=1,000 \mathrm{~N}$

- Just give the equation
- A person lifts a barbell above his head with an acceleration of \qquad $\mathrm{m} / \mathrm{s}^{2}$. The barbell exerts a force of \qquad N. What is the mass of the barbell?

○ $\mathrm{m}=\mathrm{F} / \mathrm{a}$

- A person lifts a barbell above his head with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. The barbell exerts a force of 400 N . What is the mass of the barbell?
- m = F/a
- m=400 / 2
- $\mathrm{m}=200 \mathrm{~kg}$

-What is the force of a___ kg sandbag in a free fall?
$\circ \mathrm{F}=(\mathrm{m})(\mathbf{a})$
-What is the force of a 500 kg sandbag in a free fall?
$\circ \mathrm{F}=(\mathrm{m})(\mathrm{a})$
$\circ \mathrm{F}=(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\circ \mathrm{F}=4900 \mathrm{~N}$

Which cart will accelerate more?

1. A cart pushed by a toddler. (The toddeler is pushing as hard as he can.)
2. The same cart pushed by a body builder. (The body builder is pushing as hard as he can

- 1. The cart pushed by the body builder
- Why?
- More force $=$ more acceleration

When Pushed with the same force, WHICH CART WILL ACCELERATE MORE?

- Cart A

- Cart B
- Why?
- Greater mass = less acceleration
- Cart B

