Directions: Answer the following questions.

1. What does Newton's second law of motion state?
$=$ Gmsccel is parportional to net force,
and inversely proportuinal to mass
2. What two factors affect the rate of acceleration of an object?

Directions: Use Newton's $2^{\text {nd }}$ Law to solve the following problems. Show your work!
3. How much force is needed to accelerate a 1000 kg car at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$?

$$
F=m a=(1000 \mathrm{lg})\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)=3000 \mathrm{~N}
$$

4. If a $70 . \mathrm{kg}$ swimmer pushes off a pool wall with a force of 250 N , at what rate will the swimmer accelerate from the wall? (Use the correct number of significant digits.)

$$
a=F / m=250 \mathrm{~N} / 70 \mathrm{vg}=3.6 \mathrm{~m} / \mathrm{s}^{2}
$$

5. A weightlifter raises a 200 kg barbell with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. How much force does the weightlifter use to raise the barbell?

$$
F=m_{a}=(200 \mathrm{k})\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)=600 \mathrm{~N} .
$$

6. A dancer lifts his partner above his head with an acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. The dancer exerts a force of 200 N . What is the mass of the partner?

$$
m=F / a=20003 / 20 \mathrm{ly}
$$

7. What is the acceleration of a 2,000 --kilogram truck if a force of 4,200 . N is used to make it start moving forward?

$$
a=F / m=\frac{4200 . \mathrm{N}}{2000 \mathrm{~kg}}=2.100 \mathrm{~m} / \mathrm{s}^{2}
$$

8. What is the acceleration of a 0.30 -kilogram ball that hit with a force of 25 N ?

$$
a=c / \mathrm{m}=250 / 0.30 \mathrm{~kg}=83 \mathrm{~m} / \mathrm{s}^{2}
$$

9. How much force is needed to accelerate a 68 -kilogram skier at $1.2 \mathrm{~m} / \mathrm{s}^{2}$?

$$
f=m_{n}=(68 / \mathrm{g})\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)=57 \mathrm{~N}
$$

10 . What is the mass of an object that requires a force of 30 N to accelerate at $5 \mathrm{~m} / \mathrm{s}^{2}$?

$$
m=\frac{F}{a}=\frac{30 \mathrm{~N}}{5 \mathrm{~m} / \mathrm{s}^{2}}=6 \mathrm{~kg}
$$

11. What is the force on a 1,000 .-kilogram elevator that is falling freely under the acceleration of gravity only?

$$
F=m a=\left((000, \mathrm{~kg})\left(9.8 \mathrm{n} / \mathrm{s}^{2}\right)=9800 \mathrm{~N}\right.
$$

12. What is the mass of an object that needs a force of $4,500 \mathrm{~N}$ to accelerate it at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$?

$$
M=F / a=\frac{4500 \mathrm{~N}}{5 \mathrm{~m} / \mathrm{s}^{2}}=900 \mathrm{~kg}
$$

13. What is the acceleration of a 6.4-kilogram bowling ball if a force of 12 N is applied to it?

$$
a=7 / m=\frac{12 \mathrm{~N}}{6.4 \mathrm{~g}}=1.9 \mathrm{~m} / \mathrm{s}^{2}
$$

14. Your shopping cart has a mass of 65 kilograms. In order to accelerate the shopping cart down an aisle at $0.30 \mathrm{~m} / \mathrm{s}^{2}$, what force would you need to use or apply to the cart?

$$
f=m a=(65 \mathrm{~g})\left(0.30 \mathrm{~N} / \mathrm{s}^{2}=20 . \mathrm{N}\right.
$$

15. A small child has a wagon with a mass of 10 kilograms. The child pulls on the wagon with a force of 2 newtons. What is the acceleration of the wagon?

$$
a=F / m=\frac{2 \mathrm{~N}}{10 \mathrm{~g}}=0.2 \mathrm{~m} / \mathrm{s}^{2}
$$

