CHEMISTRY OF LIFE Miller: Chapter 2

I. REVIEW: ATOMIC STRUCTURE

• center of an atom =

- in the nuc = ____ & ____
- surrounding the protons & neutrons = _____

II. CHEMICAL BONDS

- Ionic Bonds
 - one (or more) e- gets transferred from one atom to another
- Covalent Bonds
 - sharing electrons
- Van der Waals Forces
 - attraction caused by charge changes in groups of atoms

IV. MACROMOLECULES

- "Macro"molecule?
- Chemistry of Carbon
 - 4 valence e-
 - 4 bonds
 - makes structural chains:

Enrichment only

Form affects function

- Structural differences create important functional significance
 - amino acid <u>alanine</u>
 - L-alanine used in proteins
 - but not D-alanine
 - *medicines
 - L-version active
 - but not D-version
 - *sometimes with
 tragic results...

D-Dopa (biologically inactive)

Enrichment only

Form affects function Thalidomide prescribed to pregnant women in 50s & 60s reduced morning sickness, but... stereoisomer caused severe birth defects

Diversity of molecules

- Substitute other atoms or groups around the carbon
 - •ethane vs. ethanol
 - H replaced by an <u>hydroxyl group</u> (–OH)
 - nonpolar vs. polar
 - gas vs. liquid
 - biological effects!

ethanol (C₂H₅OH)

Viva la difference!

Basic structure of male & female hormones is identical

- identical <u>carbon skeleton</u>
- attachment of different functional groups
- Interact with different targets in the body
 - different effects

III. PROPERTIES OF WATER

- Polar Covalent Bonds
- electronegativity of O
- H-bonds between water molecules
- Water is weird...
 - cohesion
 - surface tension
 - evaporative cooling
 - insulation by ice
 - universal solvent
- ...lucky for us.

III. PROPERTIES OF WATER

- Acid Base
 - acid =
 - H+ donor
 - base =
 - H+ acceptor
- Measured using pH scale
 - 0 **⇒** 7 **⇒** |4
 - each step is x10

V. MACROMOLECULES • (polymer = _____, made of _____)

- Carbohydrates
 - monosaccharides, polysaccharides
 - fuel and building material
 - sugars broken for energy
 - glucose chains make glycogen, starch
 - sugar chains make cellulose, chitin (exoskeleton)

MACROMOLECULES CONT'D

- Lipids
 - uses:
 - long term energy storage,
 - insulation,
 - bouyancy
 include long hydrocarbon chains
 - hydrophobic
 - saturated, unsaturated

MACROMOLECULES CONT'D

- Nucleic acids
 - made of: _____
 - nucleotides
 - store info
 - DNA
 - RNA

MACROMOLECULES

- Proteins
 - made of ____
 - amino acids connected by: covalent peptide bond
 - 20 different a.a.
 - proteins do just about everything in living organisms
 - (book gives functions:
 - - ,

QUIZ CHECK

- You are either an A or a B.
- A: tell B four types of organic macromolecules found in living organisms.
- B: tell A how acids and bases differ. How do their pH values differ?
- A: tell B the order of strengths of organic bonds (weakest to strongest
 - covalent, hydrogen, Van der Waal, ionic
- B: tell A the name of the monomers that make up:
 - proteins
 - carbohydrates

ENZYMES

- biological catalyst
 - \bullet lower E_A
- globular protein
- delicate 3D structure
- acts on substrates
- enzyme-substrate specificity
 - active site (shape and chemistry)
 - lock and key
- regulation of enzymes
 - effect of temp?
 - pH?
 - concentration?

