р.

1a. How many atoms are in 1 molecule of propane (C_3H_8) ? _____ **b.** How many atoms are in 2.0 x 10^{22} molecules of C_3H_8 ?

c. How many atoms are in 1.0×10^{20} molecules of XeF₄?

d. How many atoms are in 7.7 x 10^{19} molecules of morphine (C₁₇H₁₉NO₃)?

2. $C_{12}H_{22}O_{11(s)}$ ----> 12 $C_{(s)}$ + 11 $H_2O_{(g)}$ + energy

a. Sucrose (table sugar) has the formula $C_{12}H_{22}O_{11}$. Sucrose can decompose to produce solid carbon and water vapor, as shown in the above equation. (This was in a demo earlier this term!) Suppose that 125 grams of $C_{12}H_{22}O_{11}$ are decomposed, and then the carbon produced is collected, washed, dried, and weighed. If 52.8 grams of carbon are collected, what is the percent carbon (by mass) in the sucrose, according to this experiment?

b. Calculate the percent carbon (by mass) in $C_{12}H_{22}O_{11}$, according to the periodic table masses.

- **3.** Morphine has the formula $C_{17}H_{19}NO_3$.
- a. Calculate the molar mass of morphine.

b. Morphine is used in anesthesia. If a patient is given 14 mg of morphine (0.014 g), how many molecules of morphine is this?

c. Convert 3.1 x 10^{22} morphine molecules into moles.

4a. Calculate the molar mass of chlorine. (Hint: $H_2O_2F_2Br_2I_2N_2CI_2$)

4b. How does 1.00 mole of H₂O compare to 1.00 mole of Cl₂? (circle the *answer* for each)

-	.		
Which has more molecules?	the H_2O	the Cl_2	they contain the same # of molecules
Which has more atoms?	the H_2O	the Cl_2	they contain the same # of atoms
Which has more mass?	the H_2O	the Cl_2	they have the same mass

5. What if you had a mole of chemistry worksheets?!?!

a. Given that 1 sheet of paper is 0.011 cm (or 0.00011 m) thick, how tall would a stack of 1 mole of worksheets be? Report answer in meters.

b. Would the height of the worksheet stack (in part (a)) be greater than the following distances:

- Distance from the earth to the moon: 3.8×10^8 m
- Distance from the earth to the sun: $1.4 \times 10^{11} \text{ m}$
- Distance to the nearest star (besides the sun); Alpha centauri system: 4×10^{16} m Diameter of our galaxy: 9×10^{20} m
- Distance to the edge of the observable universe: 4×10^{26} m

c. What if you stacked the worksheets end-to-end the long way? How tall/long would the stack be, in meters? Note: the length of one sheet of paper is 11 inches, or 28 cm, or 0.28 m.

6. The molecular formula of ibuprofen is $C_{13}H_{18}O_2$.

a. One tablet of Advil contains 200. mg (0.200 grams) of ibuprofen. How many moles of ibuprofen is this?

b. What is the mass of 4.00×10^{22} molecules of ibuprofen?

c. How many atoms are in the 4.00 x 10^{22} molecules of ibuprofen? (hint, this is like problem #1)