1. Fill in the blanks: 1 "pair" = \qquad socks, etc. 1 "dozen" = \qquad eggs, golf balls, etc.
1 "gross" = \qquad things 1 "mole" $=6.02 \times 10^{23}$ atoms, molecules, etc.

The number, 6.02×10^{23}, is also known as "Avogadro's Number" after the Italian scientist, Amadeo Avogadro. It is sometimes abbreviated as N_{A}. MEMORIZE THIS NUMBER!!!

2a. If you have 2.0 dozen water molecules, how many water molecules is this?
$\mathbf{2 b}$. If you have 30. eggs, how many dozen eggs is this? \qquad
3a. If you have 2.00 moles of water molecules, how many water molecules is this?
b. If you have 1.505×10^{24} water molecules, how many moles of water is this?
4. How many helium atoms are in 4.6 moles of helium?
5. If you have 1.8×10^{21} carbon tetrachloride molecules, how many moles of carbon tetrachloride is this?
6. How many oxygen $\left(\mathrm{O}_{2}\right)$ molecules are in 0.00100 moles of oxygen?
7. How many moles of carbon dioxide correspond to 6.5×10^{24} molecules?
8. If you have 5.00 moles of water, how many water molecules is this?
9. Determine the number of atoms in each of these molecules.
\qquad
\qquad SF_{6} \qquad
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ \qquad (glucose)
\qquad CF_{4}
$\mathrm{P}_{4} \mathrm{O}_{10}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad (sulfuric acid)

$$
\begin{aligned}
& \mathrm{C}_{254} \mathrm{H}_{377} \mathrm{~N}_{65} \mathrm{O}_{75} \mathrm{~S}_{6} \\
& \text { (cow insulin; a protein hormone) }
\end{aligned}
$$

$\mathrm{C}_{8} \mathrm{H}_{18}$ \qquad (octane, found in gasoline)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ \qquad (ethanol)
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{P}$
("sarin," a very toxic nerve agent.)
$\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$
(tristearin; the main fat found in beef tallow.)

1a. The average mass of an iron atom is 9.277×10^{-23} grams (this was discovered by experiments culminating in 1909). What is the mass of 6.02×10^{23} iron atoms; in other words, what is the mass of 1 mole of iron atoms?
b. Iron's atomic mass can be written as \qquad or \qquad
2a. The average mass of a lithium atom is $1.153 \times 10^{-23} \mathrm{~g}$.
What is the mass of 6.02×10^{23} lithium atoms; in other words, what is the mass of 1 mole of lithium atoms?
b. Lithium's atomic mass can be written as \qquad or \qquad .

3a. How many copper atoms are in 1.00 mole of copper? \qquad
b. How many water molecules are in 1.00 mole of water? \qquad
c. What is the atomic mass (or "molar mass") of Copper (Cu)? \qquad
d. What is the atomic mass (or "molar mass") of Gold (Au)?
e. What is the molar mass of nitrogen $\left(\mathrm{N}_{2}\right)$? \qquad

4a. Calculate the molar mass of water.
b. Calculate the molar mass of Iron (II) nitrate: $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$.
c. Calculate the molar mass of oxygen (Hint: remember HOFBrINCl!).
d. Calculate the molar mass of aluminum thiosulfate; $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$.
e. Calculate the molar mass of ammonium carbonate; $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

