$\qquad$

1. Make the following conversions. (You must show all unit factors to receive credit!!!)
a. $\quad 77$ kilograms into centigrams.
b. 34.6 square inches into square millimeters.
c. 50.0 kilometers per hour into meters per second.
d. $4.6 \times 10^{5}$ nanograms $(\mathrm{ng})$ into kilograms $(\mathrm{kg})$.
e. 50000 cm to km
f. 0.020 meters per minute $(\mathrm{m} / \mathrm{min})$ into inches per second $(\mathrm{in} / \mathrm{s})$.
g. 450 micrograms per minute $(\mu \mathrm{g} / \mathrm{min})$ to milligrams per hour $(\mathrm{mg} / \mathrm{hr})$
h. $\quad 0.110 \mathrm{ft}^{2}$ into square inches.
i. 3300 cubic centimeters into cubic feet.
j. 144 nanograms per second ( $\mathrm{ng} / \mathrm{s}$ ) into centigrams per minute ( $\mathrm{cg} / \mathrm{min}$ )
k. 4.0 minutes to milliseconds.
2. A patient is prescribed $180 . \mathrm{mg}$ / day of a drug. Convert this into grams per week.
m. $2000 \mathrm{~cm}^{3}$ into cubic meters.
$\underline{\text { Station \#1 Find the length of the pencil in centimeters, and then convert the length to miles. }}$
$\qquad$ cm

Station \#2
a. Find the volume of the liquid in mL or $\mathrm{cm}^{3}$ $\qquad$ mL or $\mathrm{cm}^{3}$
b. The mass of liquid in the grad cylinder is 9.58 g Calculate the density of the liquid in $\mathrm{g} / \mathrm{cm}^{3}$ :
c. Convert the density from $\mathrm{g} / \mathrm{cm}^{3}$ to pounds per cubic foot. $\left(\mathrm{lbs} / \mathrm{ft}^{3}\right)$.

Station \#3
Find the volume of the liquid in the beaker in milliliters, and convert the volume to gallons.
$(1$ gallon $=3.7854 \mathrm{~L})$
$\qquad$ mL

Station \#4
a. Find the length and width of the blue paper, in centimeters. length $\qquad$ cm
width $\qquad$ cm
b. Calculate the area of the paper, in square centimeters:
c. Convert the area from square centimeters to square feet.

Station \#5
Find the mass of the paper clip in grams, and then convert it to ounces.
(1 pound $=16$ oz (exactly))
$\qquad$ g

Station \#6
Find the maximum amount of time you can hold your breath in seconds. (report the time to the nearest 1 second), and then convert that time to days.
$\qquad$

