Wavelength range (n	m) Part of the EM spectrum	*Wavelength (nm)	Color
5×10^7 and longer	radio	650 - 700	red
5×10^5 to 5×10^7	microwave	590 - 650	orange
700 to 5 x 10	infrared (IR)	580 - 590	yellow
400 to 700	visible*	490 - 580	green
10 to 400	ultraviolet(uv)	420 - 490	blue
10 and below	gamma or x-ray	400 - 420	violet

- 2. For each problem below, fill in the blanks and show math: Convert the given wavelength from meters to nanometers (or vice versa) and determine what type of radiation it is. (If it's visible, also state the color of light.)
- **a.** EM radiation with a wavelength of 4.8×10^{-7} meters.

λ =	m
λ =	nm

part of spectrum:_____

b. EM radiation with a wavelength of 95 nanometers.

ν =	m	
$\lambda = $	nm	
part of spectrum:		

c. EM radiation with a wavelength of 3.6 x 10⁻⁶ meters.

λ =	m
λ =	nm
part of spectrum:	

d. EM radiation with a wavelength of 2.4 meters.

λ =	_m
λ =	_nm
part of spectrum:	

e. EM radiation with a wavelength of 692 nanometers

$$\lambda =$$
 ____m

 $\lambda =$ ____nm

part of spectrum: ____

f. EM radiation with a wavelength of $5.5 \times 10^{-10} \text{ m}$

$$\lambda =$$
 _____m

 $\lambda =$ _____nm

part of spectrum: _____

FM radiation with a wavelength of 6.6 x 10⁶ nm

g. EM radiation with a wavelength of 6.6 x 10⁶ nm

$$\lambda = \underline{\qquad \qquad } m$$

$$\lambda = \underline{\qquad \qquad } nm$$

$$part of spectrum: \underline{\qquad \qquad } nm$$

Notes: Electromagnetic Radiation!