AP Chem Rate of Reaction Review!

1.	For the Reaction:	$2A_{(g)} + BC_{2(g)}$	> A	$A_2B_{(g)}$ +	- 2 C _(g)
Tria	# Initial concentration of A(M)	Initial Concentration o	f BC <u>2 (M</u>)	Initial rate of t	formation of A2B (M/s)
1	0.050	0.050		0.000	016
2	0.050	0.100		0.000	064
3	0.10	0.200		0.005	512

a. Find the rate law and the value of k, including units.

b. In trial 1, what was the initial rate of formation of C?

c. Predict the rate of disappearance of $A_{(g)}$ if both reactant starting concentrations are 0.030 M. d. Calculate the initial rate of reaction (in terms of A_2B) if the initial concentrations of A and BC₂ are 0.15 M and 0.25 M, respectively.

2.
$$Cu_{(s)}$$
 + 4 HNO_{3 (aq)} -----> $Cu(NO_3)_{2(aq)}$ + 2 NO_{2(g)} + 2 H₂O_(l) + heat (blue solution) (brown gas)

Suppose the above reaction is done by pouring 100.0 mL of 0.80 Molar nitric acid at 20.0°C onto 50. grams of copper in the form 1.0 cm³ cubes. How would the rate of reaction change if you changed the following things? (Increase? Decrease? Or no change?)

a.	Change the	concentration	of nitric	acid to 0.60 M.
	<u> </u>			

- _____b. Use 50. g of copper powder, instead of the cubes.
 - _ c. Add 50.0 mL of water to the 100.0 mL of 0.80 M nitric acid, and then add
 - this solution to the 1.0 cm³ copper cubes, instead of the original solution. (still at 20.°C)
 - _d. Change the temperature of the acid to 30.0°C

3.	$2 C_5 H_6$	>	$C_{10}H_{12}$
	(cyclopentadiene)	(dicycl	opentadiene)

	Initial Concentration of $C_5H_6(M/s)$	Initial rate of formation of $C_{10}H_{12}$ (M/s)
Experiment 1	0.040	0.000267
Experiment 2	0.060	0.000601
Experiment 3	0.120	0.00240

a. Determine the rate law and the value of the rate constant.

b. How will the reaction rate be affected if the temp increases?

Explain your answer mathematically

Explain your answer in terms of what the molecules are doing

c. How will the reaction rate be affected if a catalyst is added?

Explain your answer mathematically

Explain in terms of what the molecules are doing

d. How is the reaction rate affected when the concentration of cyclopentadiene is increased?

Explain in terms of what the molecules are doing

e. If you start with a C_5H_6 molarity of 0.120 Molar, what concentration of C_5H_6 will remain after 2.00 minutes?

4. Consider the following 2-step reaction mechanism involving ozone (O_3) depletion:

Elementary Step #1 $O_{3(g)}$ + $NO_{(g)}$ $NO_{2(g)}$ + $O_{2(g)}$ (slow)Elementary Step #2 $O_{(g)}$ + $NO_{2(g)}$ ----> $NO_{(g)}$ + $O_{2(g)}$ (fast)

a. Determine the overall reaction.

b. Identify any catalyst(s) and intermediate(s)

c. Was the catalyst in this reaction a homogeneous or heterogeneous catalyst?

d. Determine the rate law for the reaction.

e. Determine the "molecularity" of each elementary step (classify each elementary step as bimolecular, unimolecular, or termolecular)

f. What is the difference between an elementary step and an overall reaction, in terms of collisions?

g. Suggest a heterogeneous catalyst for the reaction._____

5. Reaction: $2 \text{ NO} + O_2 - 2 \text{ NO}_2$

A mechanism for the above reaction is shown below.

a. Show that the mechanism is consistent with the overall stoichiometry of the reaction.

b. Identify any catalysts or intermediates.

c. Which elementary step would you expect to have a higher activation energy?

d. Determine the rate law for the reaction.

e. What is the overall order of the reaction?

f. Based on the rate law, one might propose that the reaction occurred in a single elementary step. Why is this unlikely?

Step 1 (fast eqm)	NO	+	NO	<>	N_2O_2
Step 2 (slow)	N_2O_2	+	O_2	>	2 NO ₂

6. Y ----> Z

The concentration of Y vs time was determined at 25°C. At 25°C, A plot of ln[Y] vs time was not linear. A plot of 1/[Y] vs time was linear, with a slope of 0.080 L/mol-s.

a. Determine the rate law and the value of k. (Assume 25°C unless otherwise noted)

b. Will this reaction have a constant half-life? If so, calculate the half-life.

c. Make a graph showing the concentration of Y vs time.

Explain how the rate of reaction changes over time, why this happens, and how this relates to your graph.

d. If you start with a [Y] of 0.200 M, what will be the initial rate of reaction?

e. If you start with a [Y] of 0.200 M, what will be the concentration of Y after 40. seconds?

f. If you start with a [Y] of 0.200 M, what will be the rate of reaction after 40. seconds?

g. If the reaction has an activation energy of 42 kJ/mol, what is the value of the Arrhenius parameter A?

h. Find the rate constant at 55°C.

7. W ----> 2 Z at 25°C, $k = 0.000059 \text{ s}^{-1}$

Note: The rate constant for this reaction was calculated in terms of the rate of disappearance of W.

a. Based on the units of k, what is the overall order of the reaction?

b. Which of these plots woul	d be linear?		
ln[W] vs (1/time)	ln[W] vs time	[W] vs time	1/[W] vs time

c. If you start with a [W] of 0.200 Molar, what will be the molarity after 4.00 hours, if the reaction occurs at 25°C?

d. Does this reaction have a constant half life at 25°C? If so, what is the value?

e. What is the initial rate of formation of Z, if W has a starting concentration of 0.200 M? (25°C)

Suppose that N_2O_4 and NO_2 are at equilibrium in a sealed container with a How will the following things be affected if the temperature is increased.	th a fixed volume.
a. How will the following things be affected if the temperature is more Ken	
Forward rate of rxn	
Reverse Rate of Rxn	
Activation energy	
b. How will the following things be affected if a catalyst is added?	
Keq	
Forward rate of rxn	
Reverse Rate of Rxn	
Activation energy	
$0 \qquad 2 \text{ NO} < 2 \text{ NO} < 10 \text{ heat}$	
Suppose that N _{Ω} and N _{Ω} are at equilibrium in a sealed container with	th a fixed volume.
a. How will the following things be affected if the temperature is increased	eased?
Keq	
Forward rate of rxn	
Reverse Rate of Rxn	
Activation energy	
b. How will the following things be affected if a catalyst is added?	
Keq	
Forward rate of rxn	
Reverse Rate of Rxn	
Activation energy	
10. Reaction for the decomposition of N_2O_3 :	Reaction programs
$2 N_2 O_{5(g)} \longrightarrow 4 NO_{2(g)} + O_{2(g)}$	
The energy diagram for this reaction is shown to the right.	
a. Is this reaction exothermic or endothermic?	
b. What is the value of Δ Hrxn?	
c. Write the heat term into the equation on the correct side.	
d. What is the value for Ea (Activation energy?)	
e. Sketch the energy diagram (on the same graph) if	
a catalyst is added.	
(for 10 and 11, use a scale of 1 square = 10 kJ)	
11. Rxn: $CO_{2(g)} + NO_{(g)}> CO_{(g)} + NO_{2(g)}$	
This reaction has an $Ea = 360 \text{ kJ}$ and a $\Delta Hrxn$ of 230 kJ.	
a. Is this reaction exothermic or endothermic?	
b. Write the heat term into the equation on the correct side.	
c. Sketch the energy diagram for this reaction.	
d. What is the ΔH of the reverse reaction?	
e. What is the Ea of the reverse reaction?	<u>┤┤┤┤┤</u> ┨┤╪ <u>┤┤</u> ╡┤╡╎┤╎┤┤┤┤┤┤┼┼┼┼┼┼┼┤
	Bra avaluess ->

For #12, 13, and 14, determine the rate law, the value and units of k, and the overall order of the reaction.

12. 3 A + B ----> C + 2 D

Initial [A](M)	Initial [B] (M)	Initial rate of formation of D (M/s)
0.300	0.100	0.001157
0.200	0.100	0.000771
0.450	0.200	0.00694

13.	C3PO +	R2D2	>	BB8	+	K2SO		
Initia	l [C3PO](M)	Initial	[R2D2] (I	(Iv	Initia	l rate of for	mation of	f BB8(M/min)
0.100		0.100					0.013	
0.900		0.200					0.078	
0.400		0.100					0.026	

14. 2X + Y ----> Bees?

Initial [X](M) Initial [Y] (M	I) Initial rate of formation	on of Bees? (M/s)
0.150	0.100	0.114
0.300	0.100	0.456
0.450	0.200	1.026

Answers!!!! **1a.** $r = k[A]^{1}[BC_{2}]^{2}$, $k = 1.2(8) M^{-2}s^{-1}$ or $L^{2}/mol^{2}-s$ b. 0.00032 M/s c. 0.000069 M/s d. 0.012M/s. 2. Decrease, increase, decrease, increase **3.** a. $r = k[C_5H_{10}]^2$, $k = 0.17 \text{ M}^{-1}\text{s}^{-1}$ 3e. 0.035 M **b.** As Temp increases, rate increases (see key for explanation) c. Adding a catalyst will cause the rate to increase (see key for explan.) **d.** Increasing concentration of the reactant will cause the rate to increase (see key for explan.) **b.** NO is a catalyst, NO2 is an intermediate. **4a.** O3 + O ---> 2 O2 c. Homogeneous **d.** $r = k[O3]^{1}[NO]^{1}$ **e.** Step 1 and Step 2 are each bimolecular f... see key **g**. Pt! **5a.** The mechanism adds up to the original reaction, so, yes, it is consistent. **b.** N2O2 is an intermediate. **c.** Step 2, since it has the slower rate. **d.** $r = k [NO2]^2 [O2]$ (see key for explanation/work) **e.** 3rd order overall **f.** See key...termolecular collisions are rare! **6.a.** $r = k[Y]^2$, k = 0.080 L/mol-s **b.** No! Shut up! Only 1st order reactions have constant half life. This rxn is 2nd order. **c.** See key **d**. initial rate = 0.0032 M/s **e.** [Y]= 0.12 Molar **f.** 0.0012 M/s **g.** $A = 1.8 \times 10^6 M^{-1} s^{-1}$ **h.** $k = 0.38 \text{ M}^{-1}\text{s}^{-1}$ at 55°C 7. a. First order (based on units of k) **b.** Since it is first order, $\ln[W]$ vs time would be linear (with a slope of -k) **d.** Yes! $t_{1/2} = 12000$ seconds, or 3.3 hours e. 0.000024 M/s **c.** [W] = 0.086 M8. a. increase, increase, increase (the fwd rate increases by a larger factor than reverse rate), no change. **b.** no change, increase, increase (fwd and reverse rates increase by same factor), decrease.

9. decrease, increase, increase (the reverse rate increases by a larger factor), no change.b. no change, increase, increase (fwd and reverse rates increase by same factor), decrease.

10. a. exob. -23 kJ/mole (anywhere from -20 to -25 kJ is acceptable)c. 100 kJ (95-100 is ok)d. write "+23 kJ" on the right sidee. see key!11. a. endob. write "+230 kJ" on left side.c. See key.d. Δ Hreverse rxn = -230 kJ/molee. Ea reverse rxn = 130 kJ/mole.

12. $r = k[A]^{1}[B]^{2}$, $k = 0.386 M^{-2}s^{-1}$, 3rd order overall. **13.** $r = k[C3PO]^{0.5}[R2D2]^{1}$, $k = 0.41 M^{-0.5}min^{-1}$, the reaction is 1½ order overall. **14.** $r = k[X]^{2}[Y]^{0}$ or $r = k[X]^{2}$. $k = 5.07 M^{-1}s^{-1}$, 2^{nd} order overall.