1. Fill in the blanks:

$$
\begin{aligned}
& 1 \text { ""pair" =__ socks, etc. } \\
& 1 \text { "dozen" }=\quad \text { eggs, golf balls, etc. } \\
& 1 \text { "gross" }=\quad \text { things } \\
& 1 \text { "'mole" }=\begin{array}{l}
6.02 \times 10^{23}
\end{array} \text { atoms, molecules, etc. }
\end{aligned}
$$

The number, 6.02×10^{23}, is also known as "Avogadro's Number" after the Italian scientist, Amadeo Avogadro. It is sometimes abbreviated as N_{A}. MEMORIZE THIS NUMBER!!!

2a. If you have 2.0 dozen water molecules, how many water molecules is this?
$\mathbf{2 b}$. If you have 30 . eggs, how many dozen eggs is this? \qquad
\qquad

3a. If you have 2.00 moles of water molecules, how many water molecules is this?
b. If you have 1.505×10^{24} water molecules, how many moles of water is this?
4. How many helium atoms are in 4.6 moles of helium?
5. If you have 1.8×10^{21} carbon tetrachloride molecules, how many moles of carbon tetrachloride is this?
6. How many oxygen $\left(\mathrm{O}_{2}\right)$ molecules are in 0.00100 moles of oxygen?
7. How many moles of carbon dioxide correspond to 6.5×10^{24} molecules?
8. If you have 5.00 moles of water, how many water molecules is this?
9. Determine the number of atoms in each of these molecules.

Unit Conversion Mini-Lab!

Station \#1 Find the length of the pencil in centimeters, and then convert the length to miles.
\qquad cm

Station \#2
a. Find the volume of the liquid in mL or cm^{3} \qquad mL or cm^{3}
b. The mass of liquid in the grad cylinder is 9.58 g Calculate the density of the liquid in $\mathrm{g} / \mathrm{cm}^{3}$:
c. Convert the density from $\mathrm{g} / \mathrm{cm}^{3}$ to pounds per cubic foot. (lbs/ft ${ }^{3}$).

Station \#3
Find the volume of the liquid in the beaker in milliliters, and convert the volume to gallons. $(1$ gallon $=3.7854 \mathrm{~L})$
\qquad mL

Station \#4

a. Find the length and width of the blue paper, in centimeters. length \qquad cm width \qquad cm
b. Calculate the area of the paper, in square centimeters:
c. Convert the area from square centimeters to square feet.

Station \#5

Find the mass of the paper clip in grams, and then convert it to ounces.
(1 pound $=16$ oz (exactly))
\qquad g

Station \#6
Find the maximum amount of time you can hold your breath in seconds. (report the time to the nearest 1 second), and then convert that time to days.
\qquad

