WS 7.0 Part I. Intro to Moles!

1. Fill in the blanks:

1 "pair" = _____ socks, etc. 1 "dozen" = _____ eggs, golf balls, etc. 1 "gross" = _____ things 1 "mole" = $\underline{6.02 \times 10^{23}}$ atoms, molecules, etc.

The number, 6.02×10^{23} , is also known as "Avogadro's Number" after the Italian scientist, Amadeo Avogadro. It is sometimes abbreviated as N_A. MEMORIZE THIS NUMBER!!!

2a. If you have 2.0 dozen water molecules, how many water molecules is this?2b. If you have 30. eggs, how many dozen eggs is this?

3a. If you have 2.00 moles of water molecules, how many water molecules is this?

b. If you have 1.505×10^{24} water molecules, how many moles of water is this?

4. How many helium atoms are in 4.6 moles of helium?

5. If you have 1.8×10^{21} carbon tetrachloride molecules, how many moles of carbon tetrachloride is this?

6. How many oxygen (O_2) molecules are in 0.00100 moles of oxygen?

7. How many moles of carbon dioxide correspond to 6.5×10^{24} molecules?

8. If you have 5.00 moles of water, how many water molecules is this?

9. Determine the number of atoms in each of these molecules.

H ₂ O	F2 SF6	C ₆ H ₁₂ O ₆ (glucose)	CF ₄ P ₄ O ₁₀
H ₂ SO ₄ (sulfuric acid)	$C_{254}H_{377}N_{65}O_{75}S_6$ (cow insulin; a protein hormone)	I ₂	CO ₂
C ₈ H ₁₈ (octane, found in gasoline	C ₂ H ₅ OH	$C_4H_{10}FO_2P$ ("sarin," a very toxic nerve agent.)	$C_{57}H_{110}O_6$ (tristearin; the main fat found in beef tallow.)

Unit Conversion Mini-Lab!

Station #1 Find the length of the pencil in <u>centimeters</u>, and then convert the length to <u>miles</u>.

cm

Station #2

a. Find the volume of the liquid in mL or cm³ _____mL or cm³

b. The <u>mass of liquid in the grad cylinder is 9.58</u> g Calculate the <u>density</u> of the liquid in g/cm^3 :

c. Convert the density from g/cm^3 to pounds per cubic foot. (lbs/ft³).

Station #3

Find the volume of the liquid in the beaker in <u>milliliters</u>, and convert the volume to <u>gallons</u>. (1 gallon = 3.7854 L)

_____ mL

Station #4

a. Find the length and width of the blue paper, in centimeters. length_____cm width____cm b. Calculate the area of the paper, in square centimeters:

c. Convert the area from square centimeters to square feet.

Station #5

Find the mass of the paper clip in grams, and then convert it to <u>ounces</u>. (1 pound = 16 oz (exactly))

_____ g

Station #6

Find the maximum amount of time you can hold your breath in seconds. (report the time to the nearest 1 second), and then convert that time to <u>days</u>.

S