WC 2 1			λ7		
WS 3.1			Nam	e:	p
1a. Fill in th	e masses and charge	es of the follow	ing subatomic par	ticles. (OK to round	to the nearest whole numbers.)
Subatomic	Particle: M	ass (amu*)	Charge	* 1 atomic mass unit (amu) = 1.66 x 10 ⁻²⁴ grams.
proto	on		· · · · · · · · · · · · · · · · · · ·		
neut	ron				
elect	ron				
1b. Which of the above particles are in the nucleus of the atom?					
2. <u>Isotope</u> d	efinitions:				
"variants of the same nu	a particular chemic mber of protons in e	al element whi ach atom." –W	ch differ in neutro Tikipedia	n number. All isotop	es of a given chemical element have
"forms of th	e same atom that dif	fer only in the	r number of neutr	ons." –khanacademy	.org
"atoms of th	e same element that	differ in mass	number" –Brown	and Lemay. Chemist	ry: The Central Science, 3 rd edition.
a. how are <i>num</i>	isotopes of a given of the second s	element the sar number o	ne? (circle the ans <i>f protons</i>	wer(s)) atomic mass	
b. How are isotopes of a a given element different?					
num	ber of neutrons	number o	f protons	atomic mass	
3. Determin	e the number of pro	tons, neutrons,	and electrons for	the most common iso	otope of each element:
Atom:	# of protons #	of neutrons	# of electron	18	

tom:	# of protons	#of neutrons	# of electrons
F			
Ar			
Au			

4. Fill out this chart. Do NOT assume that the type of atom shown is the most common isotope of that element.

Isotope	Symbol	Atomic #	Mass #	# of protons	# of neutrons	# of electrons
Ra-222						
			18		10	
				82	126	
U-235						
			131		78	
Н-3						
Pu-					145	

5. Write symbols (like in the "symbol" column, above) for the following:

a. A zinc atom with a mass of 66 amu ______ c. An atom with 82 neutrons and a mass of 136 amu. ______

b. An atom with 5 protons and 5 neutrons. _____ d. A copper atom with 36 neutrons____

6. Chlorine has two naturally occurring isotopes. 75.77% of chlorine atoms have a mass of 34.9689 amu. The remainder of chlorine atoms have a mass of 36.9659 amu.

a.	Write the symbol for each isotope of chlorine:
b.	How many protons are in each isotope?
c.	How many neutrons are in each isotope?
d.	Calculate the "natural abundance" of chlorine's more massive isotope.

e. Calculate the atomic mass of chlorine, based on a weighted average.

7. Consider the following data for Strontium (Sr), which has four naturally occurring isotopes:

Isotope ⁸⁴ Sr	Mass (amu) 83.9134	Natural Abundance 0.56%
	85.9093	9.86%
	86.9089	7.00%
	87.9056	

a. Fill in the blanks in the above chart.

b. Calculate the average atomic mass of this element.

8. Boron has two isotopes. 19.9% of Boron atoms have a mass of 10.012936 amu, and the remainder of Boron atoms have a mass of 11.009305 amu.

a. Determine the natural abundance of Boron-11.

b. Calculate the atomic mass of boron.

c. How many protons and neutrons are in B-10? p_____ n____

d. How many protons and neutrons are in B-11? p_____ n____

9. Write symbols (like in the "symbol" column in #4) for the following:

a. An atom that has 19 protons and 20 neutrons_____

b. An atom with a mass of 31 amu and 16 neutrons.

c. The most common isotope of bromine _____

d. An atom that has 143 neutrons, and a mass number of 235.