AP Chem For	mulae and R	oactions P	acketl

Name: Sarah Seat #____

4	T 1	337 141	D	337 ·	4.1			or formul	
	HOrmilla	W/riting	Proctice	W/rite	the	miccina	name	Or tormul	9.
L.	1 Ommuna	44 1111115	Tractice.	VV IIIC	uic	HIIOSHIE	manne	OI TOTTILUI	a.

(Rule of thumb: formulas are usually only two words long.) (Make sure you are naming it according to the correct system: ionic, covalent, acid.)
KI potassium iodide Pos diphosphorus pentoxide
ZnCr ₂ O ₂ Zinc dichromate chromic hydroxide Cr (OH) ₂
CuBr ₂ Copper(II) bromide (cuprice) kenon tetrafluoride Xe F4
SBr ₂ Sulfur dibromide ammonium carbonate (NH4) ₂ CO ₃ stranic
SBr ₂ Sulfite ion sn(CO ₃) ₂ tin (IV) Carbonate (corbonate
so, sulfur trioxide PASO, lead (11) sulfate &
hydroiodic acid HI ferric bisulfate * Fe (HSO4)3 * hint: "bisulfate" is the name of an ion! it's on your ion sheet.
carbonic acid H2CO3 helium He oxygen O2 or elumbo
arsenic acid H3 AS 04 helium 1/2 oxygen or plumbo ferrous phosphate Fe ₃ (PO ₄) ₂ Sulfat
aluminum bicarbonate* Al(HCO ₃) ₃ * hint: "bicarbonate" is the name of an ion! it's on your ion sheet.
HCIO ₂ chlorous acid sulfurous acid H2SO ₃
H2S hydrosulfucic acid Si3N4 trisilicon tetranitride
S ₂ F ₁₀ disulfur decafluoride Pb ₃ N ₄ lead (IV) nitride (plumbic) nitride
chromium (II) silicate Cr SiO3 N2O4 dinitrogen tetroxide
CI20 <u>dichlorine monoxide</u> Nazo <u>sodium oxide</u>
barium oxide Ba O
barium hydroxide Ba (OH)2
barium peroxide BaO2
barium hydrida Ra Ha

AP formulas /Rxns Packet page 2

3. Fill in the missing name or formula for each element, compound, or ion.

NO_<u>nitrogen</u> Monoxide sulfur hexafluoride <u>SF6</u>

CaO_<u>Calcium oxide</u>

CaO_<u>Calcium peroxide</u>

CaO_<u>Calcium peroxide</u>

HNO_<u>nitrous acid</u>

calcium acetate <u>Ca(C2H3O2)</u>

Oxalic acid <u>H2C2O4</u>

lithium oxalate <u>Li2C2O4</u>

NO_<u>nitrogen dioxide</u>

Gallium permanganate Ga (M104)3

1 group III so Ga+3

^{*}gallium isn't on your ion sheet, but you can figure out the charge based on its position on the periodic table!

3. Reactions Practice Part I (We'll do a few of these in class. Check answers in problem notebook) Write a chemical equation for each reaction. You need not balance. Show phase subscripts. If a reaction is "N.R." you still need to write formulas for reactants, with an arrow going to NR.
1. Acetylene gas (C ₂ H ₂) is combusted in air.
2 $C_2H_{2(g)}$ +502(g) \rightarrow 4 C_0 2(g) +2 H_2O_0 (g) 2. Nitrogen and oxygen react at high temperature (Show two possible reactions)
a. $N_2 + O_{2(g)} \rightarrow 2NO_{(g)}$ b. $N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_{2(g)}$ 3. Solutions of aluminum nitrate and sodium carbonate are mixed.
2 $Al(NO_3)_{3(aq)} + 3Na_2(O_{3(aq)} \rightarrow Al_2((O_3)_{3(s)} + 6NaNO_3$ 4. Chlorine gas is bubbled through a solution of sodium iodide.
Claig) + Na I (ag) -> 2 Na Cliag) + I2(5)
5. A piece of nickel is dropped into a solution of zinc sulfate.
Nics) + In SOucag) -> N.R.
6. A piece of calcium is placed in a crucible, and is heated until it starts burning.
2 Ca(s) + O2(g) -> 2 CaO(s)
7. A heated piece of calcium reacts with the nitrogen in the air.
3 Ca(s) + N2(g) -> Ca3N2(s)
8. Solutions of ammonium carbonate and perchloric acid are mixed.
8. Solutions of ammonium carbonate and perchloric acid are mixed. $(NH_4)_2 CO_3 (aq) + 2H ClO_4 (aq) \rightarrow 2 NH_4 ClO_4 + H_2O(e)$ 9. Potassium is dropped into water. $(aq) + CO_2(q)$
9. Potassium is dropped into water.
2 K(s) +2 H2O(e) -> 2 KOH(ag) + H2(g)
10. Tin is dropped into water.
$Sn_{(S)} + H_2O_{(R)} \rightarrow N.R.$
11 A piece of iron is dropped into a solution of hydrochloric acid. A green solution forms
(Note: $Fe^{+2}_{(aq)}$ ion is usually a pale green. $Fe^{+3}_{(aq)}$ ion is usually orange.) Fe(s) + $2HCl_{(aq)} \longrightarrow FeCl_{2(aq)} + H_{2(g)}$
12. Solutions of potassium hydroxide and nitrous acid are mixed.
KOH(ag) + HNO2(ag) -> H2O(e) + KNO2(ag)
13. A piece of zinc is dropped into a solution of ferric nitrate.
3 Zn(s) + 2 Fe(NO3)3(aq) -> 3 Zn(NO3)2(aq) => Fe(s)

4. Reactions Practice Part II.

Write a chemical equation for each reaction. Balance and show phase subscripts. Two are N.R. If a reaction is "N.R." you still need to write formulas for reactants, with an arrow going to NR.

1. Fluorine gas is bubbled through a solution of lithium bromide.

2. Solid iodine is stirred into a solution of lithium fluoride.

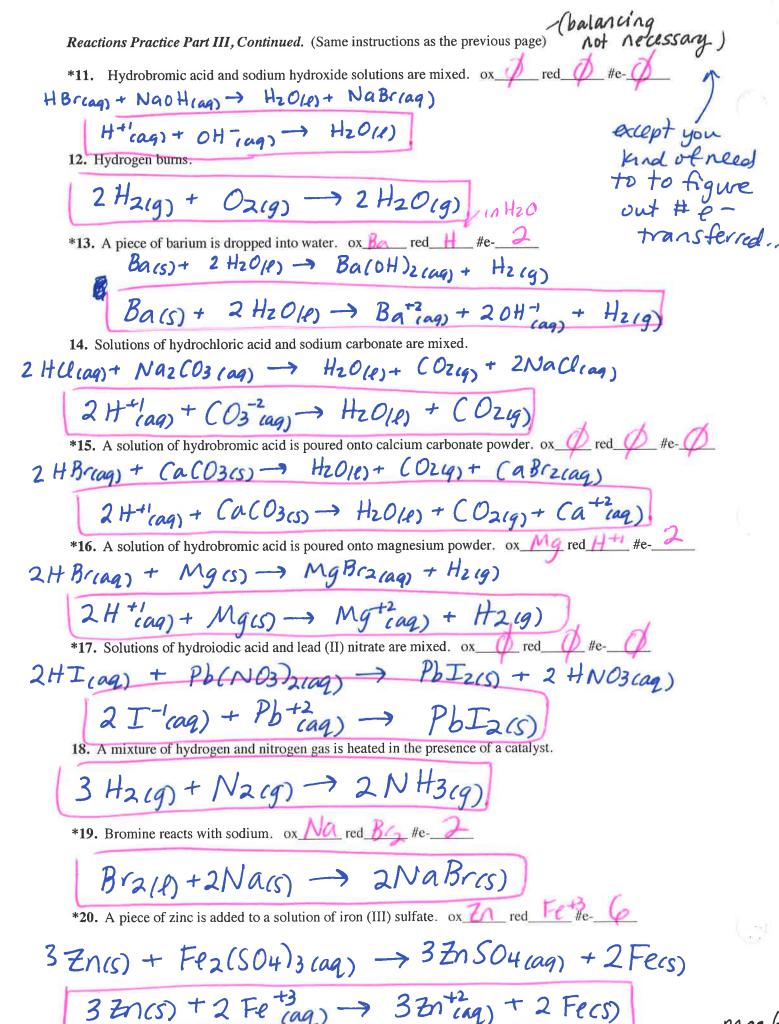
3. Solid lithium carbonate is added to a solution of bromic acid.

4. Solutions of sodium hydroxide and bromous acid are mixed.

5. A piece of magnesium is placed into a solution of chromium (III) sulfate.

6. Bromine reacts with iron powder. (Show the two possible balanced equations, depending on the charge of iron that forms).

7. Coal (carbon) burns in a power plant.


8. Sulfur is burned in air. (Show two possible reactions)

9. Calcium metal is dropped into water.

12. Liquid cyclohexene (C₆H₁₀) is combusted in air.

6	age 5				
Reactions Practice Part III.	Name:	Seat #			
Write a <u>net ionic</u> equation for each reaction, including subscripts. Balance at least reactions 1-10. Note: Not all reactions will have compounds that should be split up! Only aqueous ionic compounds and aqueous strong acids should be split up into ions. (Assume that all acids given in this part are strong acids) None of these are N.R. For the starred (*) reactions, fill in the blanks to indicate the substance oxidized (if any), the substance reduced (if any), and the overall # of electrons transferred (if any).					
*1. Solutions of magnesium sulfat	e and potassium phosphate ar	e mixed. ox pred pred #e-			
3Mg504(aq)+2K3P04(ag)-	$\rightarrow M93(904)_{2(5)} +$	3K2S04(aq)			
$3Mg^{+2}(aq) + 2PO$ *2. Aluminum is added to bromine	6^{-3} \rightarrow $6^{$	$(PO_4)_2$ (5) Intil reaction occurs. ox Al red B_{C_2} #e-6			
2 Alcs) + 3 Brz (.					
*3. Aluminum foil is added to a so 2 Al(s) + 3CuCl2(aq)					
	nate is added to a solution of i	nitric acid.			
(NH4) 2 (03 (ag) +2 HNO3	3 cag) -> 2NH4N	03 (ag) + H20(e) + (Oz(g)			
(CO3-2cag) + 2H+	(ag) -> H20(1)	+ (Ozig)			
F2(g) + $2KI(aq) \rightarrow 2KI(aq)$	h a solution of potassium iodi $2KF_{cas} + I_{2cs}$	de. ox <u>I-1</u> red <u>F2</u> #e- 2			
$F_{2(g)} + 2 I_{caq}^{-1} \rightarrow$ *6. A piece of zinc is added to aqu	$2F^{-1}(aq) + I_2$ neous nitric acid. ox $\frac{2}{3}$	red_H+1 #e			
₹n(s) + 2HNO3(aq) →	Zn (NO3) 21 ags +	Hzig)			
₹7. A freshly cut piece of sodium		219) air. ox Na red Oz #e- 4			
4 Na(5) + O2(9	$\rightarrow 2Na_2($	D(s)			
*8. Magnesium powder is added to					
Mg(s) + 2H2 O(e)	→ Mg(OH)	2(5) + Hz(g)			
9. Octane (C ₈ H _{18(i)}) burns in your c	ar engine.				

Mg(s) 9. Octane (2 C8 H18 (1) + 2502(g) ->16 CO2(g) +18 H2O(g) *10. A piece of nickel is added to a solution of tin (IV) nitrate. ox Ni red 50+4 #e-4 Sn(NO3)4(aq) -> 2Ni(NO3)2(ag) + Sn(s)

page b