Today
 Continue with 1-variable Statistics

Fri \& Mon

Review for Final Exam
Return Textbook on Monday

Tues and Wed

Final Exam

Pull out you your HW

Class Notes provided

(your notes returned tomorrow)

$$
\text { Start with Questions } 1 \text { to } 4 \text { (review) }
$$

Classwork (Stat Day 2) - Part 1 Review from last class

1

a) Count the total frequency
b) Calculate the percent of the cars that provide a fuel economy of 30 mpg or higher.

Classwork (Stat Day 2) - Part 1 Review from last class

1

a) Count the total frequency 17
b) Calculate the percent of the cars that provide a fuel economy of 30 mpg or higher.

$$
\frac{4}{17} \times 100
$$

Find the mean score

$$
\begin{aligned}
& \bar{x}=\quad= \\
& \gamma \\
& \text { ansuler } \\
& \begin{array}{l}
\text { show } \left.\begin{array}{c}
\text { critical } \\
\text { totals }
\end{array}\right)
\end{array} \\
& \text { to } 0.1
\end{aligned}
$$

X	f
Score (x)	Frequency (f)
41	2
44	1
47	5
50	6
53	12
56	3

Find the mean score

1-WEr* Stats Li

1-W<compat>ᄒ<compat>ᅡ St Et
 $3 \times 2=7.545$
 $5 \times=4$. 01444436
 $0 x=3.944622613$
 $\downarrow 17=29$

Find the mean score

1-V.ar St.gt.E L1


```
    又=50,5124138
    Ex=1465
    Ex2=74459
    5x=4.014444363
    0x=3.944622613
    \downarrow.12=29
```

Janelle recorded the length, In minutes, of each movie In her collection. These box-and-whlskers plots show the data for the comedies and dramas.

a) The median Drama time is about 95 minutes? 250
b) What percent of Comedies were above 110 min ? 5
c) The IQR for Drama is 30
\qquad minutes.
 minutes.
d) 75% of the Dramas were greater than

Janelle recorded the length, In minutes, of each movie in her collection. These box-and-whiskers plots show the data for the comedies and dramas.

a) The median Drama time is about 95 minutes?
b) What percent of Comedies were above 110 min ? 25
c) The IQR for Drama is 30 minutes.
d) 75% of the Dramas were greater than

4. The difference between life and death is often just minutes when it comes to stopping bleeding. Two emergency procedures are being compared for their in stopping bleeding at the scene of accidents. The time from when 911 was to the time that paramedics reported the bleeding stopped was recorded for procedure A. The data is shown below (in minutes).

Bleeding Times for Procedure A

7	36	7	4	24	8	10
3	3	5	4	17	6	5
19	29	5	6	10	4	

checksum 212

Enter these times as data into your GDC, L_{1} and then continue to the back side.
a) On your GDC make an appropriate histogram of the bleeding times and follow the calculator instructions as necessary (5 to 10 bar requirement). Make a neat sketch of it below, fully labeled.

b) Calculate the mean and median bleeding times and include units.
Mean 10.6 min Median lo min

Given the distribution you see in the histogram, which of these two is more reliable, if any?

c) Determine which times are outliers, if any.
d) Compare histograms and statistics for both procedures. You should notice the big difference in how the variation of bleeding times compares between times for Procedure \mathbf{A} and Procedure B

Stop

Goal
Calculate and use the Standard Deviation to measure Variation in a data set.
follow the powerpoint and fill in your notes

Part 2- Standard Deviation (\mathfrak{A} statistic of variation of data)

1. When prompted, write down the 5 very difficult numbers \qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { just } \\
& \text { Watch }
\end{aligned}
$$

DaTa SeT	3	4	5	1	2		
	1	2	3	4	5		what's mean mean

what is the
average distance from the mean?

How far is each
value from the mean?

How far is each value from the mean?	$2+1+0+1+2=\frac{6}{5}=1.2$
	So le dogs is the average dist. from the meant sort of)
The Standard Deviation is	
the average distance from the mean	
(Sort of)	

So 1.2 dogs is the average dit from the

The Standard Deviation is the average distance from the mean (sort of)

What did we
just do ??

and now the formula....
write this down on your notes
Std.
Deviation
$\frac{\left(x_{1}-\bar{x}\right)^{2}}{n}$

Formula for $\boldsymbol{\sigma}=$

3	4	5	1	2
$=(-3)$	(-3)	(-3)	(-3)	(-3)

take the individual distances from the mean

$$
\begin{gathered}
(3-3)(4-3)(5-3)(1-3)(2-3) \\
\sigma=(-))
\end{gathered}
$$

$$
\begin{gathered}
(3-3)^{2}(4-3)^{2}(5-3)^{2}(1-3)^{2}(2-3)^{2} \\
\sigma=\left(x_{i}-\bar{x}\right)
\end{gathered}
$$

\square

Average

$$
\begin{gathered}
\frac{(3-3)^{2}+(4-3)^{2}+(5-3)^{2}+(1-3)^{2}+(2-3)^{2}}{5} \\
\sigma=\sum\left(x_{i}-\bar{x}\right)^{2}
\end{gathered}
$$

Square root
$\sqrt{\frac{(3-3)^{2}+(4-3)^{2}+(5-3)^{2}+(1-3)^{2}+(2-3)^{2}}{5}}$
Standard Deviation $\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}$

$$
\bar{\chi}=3 \log _{5} \pm 1.2 \text { dogs }
$$

So
Standard deviation is the square root of the average of the squared distances from the mean

$$
\mathbf{d}
$$

March 05, 2020

Assignment
 Worksheet 2001

