What do you call a chicken who is staring at lettuce?

What do you call a chicken who is staring at lettuce?
chicken Caesar Salad
start 2020 AP EXam Review
\rightarrow Overview of Exam
\rightarrow Notation review
\rightarrow COMMON INTERPRETATIONS

Between now and the quiz on Wednesday:
\rightarrow Ch. 2 Reviewtercises (po s21- -)
1-4 only
\rightarrow Ch. 12 AP Practice Test (p@ $823 \cdots$) 1,3-8, 11 only
\rightarrow FRAPpy! \leftarrow Gets a ba into R2. 2
\rightarrow LCQ 12. (al quires है solutions remain in class)
\rightarrow strive for a 5

6 Free-Response Questions

Part A 5 problems:

- 1 multipart question with a primary focus on collecting data
- 1 multipart question with a primary focus on exploring data
- 1 multipart question with a primary focus on probability and sampling distributions
- 1 question with a primary focus on inference
- 1 question that combines 2 or more skill categories

Part B|1 problem:

1 investigative task that assesses multiple skill categories and content areas, focusing on the application of skills and content in new contexts or in non-routine ways

Notation Review [miNi quiz later this week]

Statistics Notation

Notation is an important part of communication in mathematics. Using the correct notation for statistical concepts is essential. BE CAREFUL! In statistics, unlike algebra, you are NOT free to substitute another letter in place of standard notation. Each of the above letters has a specific meaning in statistics. Also remember that "hats" and "bars" change those meanings. For example, y, \hat{y}, and \bar{y} each have a very different meaning. Also, capitalizing a letter can change its meaning.

First Semester Concepts:

1. Identify the letter used for the mean of a population.
2. Identify the letter used for the mean of a sample.
3. Identify the letter used for the standard deviation of a population.
4. Identify the letter used for the standard deviation of a sample.
5. Explain the difference between x_{2} and x_{i}.

First Semester Concepts:

1. Identify the letter used for the mean of a population.
2. Identify the letter used for the mean of a sample.
3. Identify the letter used for the standard deviation of a population. σ
4. Identify the letter used for the standard deviation of a sample. $S \quad S_{x} S_{y}$
5. Explain the difference between x_{2} and x_{i}.
χ_{2} represents the $2^{\text {nd }}$ observed x-value while x_{i} represents all possible x-values.
6. Identify the letter that represents the standard normal variable.
7. Which letter represents the slope of the least-squares regression line?
8. Which letter represents the y-intercept of the least-squares regression line?
9. Explain the difference between y, \hat{y}, and \bar{y}.

$$
\hat{y}=a+b x
$$

6. Identify the letter that represents the standard normal variable.
7. Which letter represents the slope of the least-squares regression line?
8. Which letter represents the y-intercept of the least-squares regression line? a
9. Explain the difference between y, \hat{y}, and \bar{y}.
y observed y-values
\hat{y} predicted y-values
\bar{y} average y-value
10. Explain the difference between y_{2} and $\left(\hat{y}_{2}.\right) \quad y$-value $2^{\text {nd }}$ observed

$$
y \text {-value }
$$

11. Identify the letter used for correlation.
12. Which letters are most commonly used for random variables?
13. Explain the difference between the variables x and X.
14. Identify the letter that represents the number of observations in a sample. n
15. Identify the letter used for the probability of an event.

$$
X \text { is random variable and } x \text { is not }
$$

Notation Quiz (Practice)

- due by Thursday
- Quot' on notation on Thursday

Common
Interpretations (prior to inference)
fill out while we review

Common Interpretations Prior to Inference ${ }_{\text {Notes }}$ o be filled out)

$$
\ldots \ldots \ldots
$$

The average number of cheeseburgers eaten by the sample of JCS students is 6 cheeseburgers.

$$
I Q R=5
$$

The middle 50% of the number of cheeseburgers eaten by the sample of JCS students are within 5 cheeseburgers of each other.

$$
\sigma=2.74
$$

The number of cheeseburgers students eat per month typically varies from the mean by about 2.74 cheeseburgers.

Common Interpretations Prior to Inference ${ }_{\text {Notes }}$ to be filled out)

Interpret the mean $\quad \mu=6$ cheeseburgers
The average number of cheeseburgers eaten by the sample of JCS students is 6 cheeseburgers.

$$
\underset{I Q R=5 \text { cheeseburger }}{Q_{3}-Q_{1}}
$$

The middle 50% of the number of cheeseburgers eaten by the sample of JCS students are within 5 cheeseburgers of each other.
Pop. Std Deviation_ $\quad=2.74$
The number of cheeseburgers students eat per month typically varies from the mean by about 2.74 cheeseburgers.

Classifying Outliers:

\qquad $=Q 3+1.5(I Q R)$ \qquad $=Q 1-1.5(I Q R)$

Interpret $80^{\text {h }}$ percentile 80% of the students in the US scored 27 or lower on the ACT Exam.

Classifying Outliers:

Upper fence $=Q 3+1.5(I Q R) \quad$ Lower Fence $=Q 1-1.5(I Q R)$
Interpret Percentiles $80^{0 / 4}$ percentile
80% of the students in the US scored 27 or lower on the ACT Exam.

Interpret

$$
z=\frac{x-\mu}{\sigma}=-1.76
$$

Einstein scored 1.76 standard deviations below the mean on the statistics test.
Interpret

$$
r=-0.85
$$

There is a strong, negative, linear relationship between time spent studying for the AP Exam and score on the AP Exam. (Assuming a scatterplot indicates the relationship IS in fact linear)

Interpret r^{2}, the
$r^{2}=0.72$
72% of the variation in AP Exam scores (y) are explained by the linear model that uses time spent studying (x) to predict AP Exam scores (y).

Interpret Z-Scores $\quad z=\frac{x-\mu}{\sigma}=-1.76$
Einstein scored 1.76 standard deviations below the mean on the statistics test.
Interpret correlation coefo $r=-0.85$
There is a strong, negative, linear relationship between time spent studying for the AP Exam and score on the AP Exam. (Assuming a scatterplot indicates the relationship IS in fact linear)
Interpret \underline{r}^{2}, the coeff. of determination $r^{2}=0.72$
72% of the variation in AP Exam scores (y) are explained by the linear model that uses time spent studying (x) to predict AP Exam scores (y).

Interpret the residual resid $=y_{\text {actual }}-y_{\text {predicted }}=-2.6$
The predicted height of this student is 2.6 inches larger than the actual height of this student when using a linear model that uses shoe size (x) to predict height (y).
Interpret the Slope $\quad b=-2.3$
For every increase of 1 unit of x (in context), the predicted value of y (in context) will decrease by 2.3 units.

If a student studies zero hours (x), their predicted score on the test 5_{b} (y) is 40.1 points.

Interpret s, stand deviation of the residuals $s=1.235$ wins When using a linear model with points per game (x) to predict wins (y), our win predictions with typically be off by 1.2 wins.

Notes and Tips for Inference

Always check if there is random sampling and you don't know if there was replacement. Don't check the 10% condition on an experiment (Not sure but it could cost you a point!)

This is a check for normality of the sampling distribution for z and t tests (not χ^{2}). You should state the word normal for the check, but do NOT state that the sample data is normal (it isn't). Rather state that the sample data is symmetric with no outliers.

Notes and Tips for Inference

10° Condition

Always check if there is random sampling and you don't know if there was replacement. Don't check the 10% condition on an experiment (Not sure but it could cost you a point!)

This is a check for normality of the sampling distribution for z and tests (not χ^{2}). You should state the word normal for the check, but do NOT state that the sample data is normal (it isn't). Rather state that the sample data is symmetric with no outliers.
$\downarrow \downarrow \downarrow$
Name the Test vs. Formula
You must give the formal name of the test OR the formula for the statistic/conf. interval. You do not need to do both. Give the name as it is easier and avoid the formula as it is easy to mess up details/notation.

Explicitly comparing the p-value to the alpha value is ALWAYS required. Don't forget to write that step.
$\downarrow \downarrow \downarrow$
Name the Test vs. Formula
You must give the formal name of the test OR the formula for the statistic/conf. interval. You do not need to do both. Give the name as it is easier and avoid the formula as it is easy to mess up details/notation.

Doit for gel linkage
Explicitly comparing the p-value to the alpha value is ALWAYS required. Don't forget to write that step.

Wording Conclusions

1. Never reference the sample in your parameter, hypotheses, or your conclusion. Don't use wording that implies you are talking about the sample!
2. You MUST MUST MUST reference the parameter in your conclusion. Have the word MEAN, PROPORTION, or SLOPE in your conclusions for your z and t procedures. (chi-sq you word differently).

We are 94% confident that the interval from 44.1\% to 49.9\% captures the true population proportion of U.S. women that would say they don't get enough time to themselves.

We are 94% confident that the interval from 44.1% to 49.9% captures the true population proportion of U.S. women that said they don't get enough time to themselves.
(this references the women in the sample)

We are 94% confident that the interval from 44.1\% to 49.9\% captures the true population proportion of U.S. women that would say they don't get enough time to themselves.

We are 94% confident that the interval from 44.1% to 49.9% captures the true population proportion of U.S. women that said they don't get enough time to themselves.
(this references the women in the sample)

We are 94% confident that the interval from 44.1% to 49.9% captures the true number of U.S. women that would say they don't get enough time to themselves.
(this doesn't use the word proportion)

We are 95% confident that the interval from 25% to 32% captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.

Bact

We are 94% confident that the interval from 44.1% to 49.9% captures the true number of U.S. women that would say they don't get enough time to themselves.
(this doesn't use the word proportion)
Interp Confidence Interval $(0.25,0.32)$

We are 95% confident that the interval from 25% to 32% captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.

Inter to Confidence Level $9 \mathrm{~s} \%$

If we take many sample of size 800 (n) from this populations, about 95\% of them will result in an interval that captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.

$$
s_{\bar{x}} \text { or } s_{\hat{p}} \text { or } s_{b} \text { or } s_{\widehat{p_{1}}-\widehat{p_{2}}} \text { etc } \ldots
$$

When taking samples of size 800 and calculating the sample proportion, these sample proportions will typically be 0.027 away from the true proportion of people in the population that scored a 5 on the AP Exam.

Inters. Confidence Level 95\%
If we take many sample of size 800 (n) from this populations, about 95\% of them will result in an interval that captures the (parameter in context) true proportion of people in the population that scored a 5 on the AP Exam.
Inter std error of a statistic $s_{\bar{x}}$ or $s_{\hat{p}}$ or s_{b} or $s_{\widehat{p_{1}}-\widehat{p_{2}}}$ etc ...
When taking samples of size 800 and calculating the sample proportion, these sample proportions will typically be 0.027 away from the true proportion of people in the population that scored a 5 on the AP Exam.
$H_{o}: p=0.80 \quad H_{a}: p \neq 0.80 \quad p=$ true population proportion of free throws that Rickey Bobby makes

$$
p-\text { value }=0.0075
$$

$p-$ value $=0.0075<0.05=\alpha$, reject the H_{o}
We have convincing evidence that the (H_{a} with parameter with context) true population proportion of free throws that Ricky Bobby makes is not equal to 80%.

$$
p-\text { value }=0.0075
$$

Assuming the true proportion of the shots Ricky Bobby makes is 0.80 (H_{o} is true) there is a 0.0075 (p-value) probability of getting a sample proportion of 0.64 (sample statistic we got) or one that is more extreme
$H_{o}: p=0.80 \quad H_{a}: p \neq 0.80 \quad p=$ true population proportion of free
Conclusion of a Signit. Test $\quad \begin{gathered}\text { throws that Rickey Bobb } \\ p-\text { value }=0.0075\end{gathered}$
p-value $=0.0075<0.05=\alpha$, reject the H_{o}
We have convincing evidence that the (H_{a} with parameter with context) true population proportion of free throws that Ricky Bobby makes is not equal to 80\%.

$$
p-\text { value }=0.0075
$$

Assuming the true proportion of the shots Ricky Bobby makes is $0.80\left(H_{o}\right.$ is true) there is a 0.0075 (p-value) probability of getting a sample proportion of 0.64 (sample statistic we got) or one that is more extreme
$H_{o}: p=0.80 \quad H_{a}: p \neq 0.80 \quad p=$ true population proportion of free
Conclusion of a Signif. Test $\quad \begin{gathered}\text { throws that Rickey Bobb } \\ p-\text { value }=0.0075\end{gathered}$
$p-$ value $=0.0075<0.05=\alpha$, reject the H_{o}
We have convincing evidence that the (H_{a} with parameter with context) true population proportion of free throws that Ricky Bobby makes is not equal to 80%.

Assuming the true proportion of the shots Ricky Bobby makes is 0.80 (H_{o} is true) there is a 0.0075 (p-value) probability of getting a sample proportion of 0.64 (sample statistic we got) or one that is more extreme

Type I Error: $\frac{\text { Ho is really true }}{\text { but we veject }}$ Type II Error:

Interpret \qquad : We conclude that Ricky Bobby lied about making 80% of his free throws; when in reality he really DOES make 80\%.

Interpret We do not have enough evidence to conclude Ricky Bobby makes less than 80% of his free throws; when in reality he does not make than 80\%.

Interpret $:$

$$
\text { power }=0.35
$$

Given that Rickey Bobby really doesn't make 80\% of his shots, when sampling 100 shots, there is a 35% chance that we will correctly reject the null and find enough evidence to conclude that he does not make 80% of his free throws.

$$
\begin{aligned}
& P(\text { Type I error })=\underline{P\left(\text { reject Ho } \mid H_{0} \text { istrue }\right)=\alpha=\text { signif }} \text { leve } \mid \\
& P(\text { Type II error })=
\end{aligned}
$$

Confidence Level $=$ \qquad

Power $=$ \qquad

Interpret \qquad : We conclude that Ricky Bobby lied about making 80\% of his free throws; when in reality he really DOES make 80\%.

Interpret We do not have enough evidence to conclude Ricky Bobby makes less than 80\% of his free throws; when in reality he does not make than 80\%.

Interpret :

$$
\text { power }=0.35
$$

Given that Rickey Bobby really doesn't make 80\% of his shots, when sampling 100 shots, there is a 35% chance that we will correctly reject the null and find enough evidence to conclude that he does not make 80% of his free throws.

$$
\begin{aligned}
& P(\text { Type I error })=\underline{P\left(\text { reject } H_{0} \mid H_{0} \text { istrue }\right)=\alpha=\text { signifoleve }|.||c| c|} \\
& P(\text { Type II error })=\underline{P\left(\text { fail to reject } H_{0} \mid H_{0} \cdot \beta \text { false }\right)=\beta}
\end{aligned}
$$

Power $=$ \qquad
 $\frac{\text { Interpret Type: }}{\text { error }}$

We conclude that Ricky Bobby lied about making 80\% of his free throws; when in reality he really DOES make 80%.

: We do not have enough evidence to conclude Ricky Bobby makes less than 80\% of his free throws; when in reality he does not make than 80\%.

Interpret \qquad :

$$
\text { power }=0.35
$$

Given that Rickey Bobby really doesn't make 80\% of his shots, when sampling 100 shots, there is a 35\% chance that we will correctly reject the null and find enough evidence to conclude that he does not make 80% of his free throws.

Type I Error: $\frac{\text { Ho is rec }}{\text { but we }}$
Interpret Type:
error:
We conclude that Ricky Bobby lied about making 80\% of his free throws; when in reality he really DOES make 80%.

$\frac{\text { Interpret Type II: }}{\text { error }}$

 : We do not have enough evidence to conclude Ricky Bobby makes less than 80\% of his free throws; when in reality he does not make than Interpret POWer 80\%. :power $=0.35$
Given that Rickey Bobby really doesn't make 80\% of his shots, when sampling 100 shots, there is a 35% chance that we will correctly reject the null and find enough evidence to conclude that he does not make 80% of his free throws.

$$
\begin{aligned}
& P(\text { Type I error })=P(\text { reject to } \mid \text { Ho is true })=\alpha=\text { signify |eve } \mid
\end{aligned}
$$

$$
\begin{aligned}
& \text { Confidence Level }=P(\text { fast to lat the } \mid \text { to turn })=1-\alpha \\
& \text { Power }= \\
& P\left(\text { correctly rejecting a false } t_{0}\right)=P\left(\text { regent } H_{0} / H_{0} \text { is face }\right)
\end{aligned}
$$

(1) finish the AP Stats
Notation Quiz (Practice) by Thursday

(2) Prepare for The ch. 12 Quiz on Wednesday
\square

