

reminder

Pick Up The
Purple half sheet and tape into to day's notes

Chapter 4 Test is next Wednesday

Weill go over yesterday's
HW timor row but please
let me know about questions nona.

4.... 48-49, 53bc, 54

$$
5[\sqrt{x-2}+1]=15
$$

(a) $5-3\left(\frac{1}{2} x+2\right)=-7$
[c] $12-\left(\frac{2}{3} x+x\right)=2$
(d)

$$
\begin{aligned}
& -3(2 x+1)^{3}=-192 \\
& (2 x+1)^{3}=64
\end{aligned}
$$

54

The AIM
for the next few days...

1. Solve single variable inequalities
2. Graph two variable inequalities
Z. solve systems of two variable inequalities

What will the solutions look like?

1. Solve single variable inequalities	
$2 x-1 \geq 7_{0} x^{2}-5$	2. Graph two variable inequalities
$x-2 y>x+1$	
or per hips	

3. solve systems of two variable inequalities

$$
y \geq 2 x^{2}+5 x-3
$$

AIM
Solve
single variable inequalities

SCHEDULE FOR TODAY:

MANDOUT

The Boundary Point Method
 To solve more complicated Inequalities

1.Determine the boundary point or points.

To do this, change the inequality to an equation.
Then you can either:
A. Solve the equation algebraically.
or...
B. Solve the equation graphically to determine the boundary points and to create regions.
2.Add the boundary points to a number line
3. Test a point in the original inequality in all regions, showing the details.
4.Based on the test, shade in the appropriate section(s) of the number line.
5.Write your final inequality, algebraically in an appropriate way.
(1) Use the boundary Point method to solve the one variable inequality $2 x-1 \geq 7$
b) Now solve the original inequality $2 \mathbf{x - 1} \geq \mathbf{7}$ algebraically to verify above.

the "direct" way doesn't always work with all types of functions so the test point method is necessary.

2 Use the boundary method to solve the one variable quadratic inequality $\quad x^{2}-2 x<0$
$x^{2}-2 x=0$
$x(x-2)=0$
LP.
$x=0$
$x-2=0$
boundary pts are $x=0, x=2$

$$
\text { Test } x=-1 \quad(-1)^{2}-2(-1)<0
$$

$$
1+2<0 \text { false }
$$

$$
\text { Test } x=1 \quad(1)^{2}-2(1)<0
$$

$$
\text { Test } x=3 \quad(3)^{2}-2(3)<0 \text { false }
$$

$$
0<x<2
$$

Solve single variable inequalities (1 Variable)

The solutions to single variable inequalities can always be shown on a number line.

$x^{2}-3 x-10 \leq 0$

$$
-2 \leq x \leq 5
$$

Now check graphically

$$
\begin{aligned}
& \text { example on your own } \\
& 4|x+1|-2>6 \\
& <\underset{-3}{-(2)}> \\
& x<-3 \text { OR } x>1 \\
& -\infty<x<-3 \\
& -\infty<-3,1 / \infty<\infty
\end{aligned}
$$

$$
\begin{gathered}
\text { Now Graphically (GDC) } \\
4|x+1|-2>6
\end{gathered}
$$

When are the y-values of

$$
4|x+1|-2
$$

higher than the y-values of

Now solve the whole

$$
\begin{aligned}
& \text { inequality } \\
& \text { algebraically }
\end{aligned}
$$

$$
4|x+1|-2>6
$$

Solve $x^{2}-5>4 x$ using the boundary point method Boundary points)

Now graphically $x^{2}-5>4 x$

handout called "Assignment 4.2.1"
you will need your textbook, FYI

for tomorrow's class
 (with sub)
 1. LCQ (partner)
 2. Work on Assignment

