
(1)

$$
\begin{aligned}
& \text { Solve for } n \\
& 2 m-(3+n)=100 \mathrm{~m} \\
& -2 m \quad-2 m \\
& -(3+n)=98 m \\
& -3-n=98 m \\
& +3
\end{aligned}
$$

$$
-n=98 m+3
$$

$$
\text { So } n=-98 m-3
$$

(2) $\frac{1}{3}|10-x|=5+x$
multiply all three terms by 3

$$
|10-x|=15+3 x
$$

(2) $\frac{1}{3}|10-x|=5+x$
multiply all three terms by 3

$$
|10-x|=15+3 x
$$

$$
\begin{aligned}
\text { onsite } & =r e g h t \text { ste } \\
10-x & =15+3 x \\
+x & +x
\end{aligned}
$$

$$
\left.\right|_{-15}=1_{-15} 5+4 x
$$

$$
\begin{aligned}
-5 & =4 x \\
x & =-\frac{5}{4}
\end{aligned}
$$

$$
\begin{array}{r}
\text { inside }=\text { opp of right side } \\
10-x=-(15+3 x) \\
10-x=-15-3 x \\
+3 x \\
10+3 x \\
10+2 x=-15 \\
2 x=-25 \\
2 x=-25
\end{array}
$$

(3) Solve the inequality direoly

$$
\begin{aligned}
& 2\left|\frac{x-5 \mid}{2}\right| \geq \frac{13}{2} \\
& |x-5| \geq 6.5
\end{aligned}
$$

inside \geq los inside

$$
\begin{array}{ll}
x-5 \geq 6.5 & x-5 \leqslant-6.5 \\
+5 & +5 \\
x \geq 11.5 & x \leq-1.5
\end{array}
$$

(4) $4 m^{5} \cdot 3 m^{-7}=\frac{12}{m^{2}}$
(5) $\frac{x^{2}}{w^{-7}} \cdot \frac{x^{3} w^{2}}{x}=x^{4} w^{9}$
(6) $\left(\frac{m^{5} n^{-3}}{y}\right)^{-2}=\frac{y^{2} n^{6}}{m^{10}}$

4-22. Solve $(x-3)^{2}-2=x+1$ graphically

4-23. Graph a system of equations to solve $2|x-4|-3=\frac{2}{3} x-3$.

$$
\begin{aligned}
& y=2|x-4|-3 \\
& y=\frac{2}{3} x-3
\end{aligned}
$$

$y=|x|$

4-24. Solve each of the following equations using any method.
a. $-3 \sqrt{2 x-5}+7=-8$

$$
\text { b. } 2|3 x+4|-10=12
$$

4-27. Solve the following equations. Be sure to check your answers for any extraneous solutions.

$$
\text { a. } \sqrt{2 x-1}-x=-8
$$

$$
\begin{aligned}
& (\sqrt{2 x-1})^{2}=(x-8)^{2} \\
& 2 x-1=(x-8)(x-8)
\end{aligned}
$$

b. $\sqrt{2 x-1}-x=0$

4-28. Find the value of x.
a.

b.

Use the solutions to check your answers carefully.

You have 5 minutes.
-Use a pen, record your scores

AIM today:

- Determine the meaning of the solutions of systems (as they relate to their graphs)
- Find solutions to complex systems

What do solutions to

- Systems look like?

What do solutions look like?

$$
\frac{2}{x}=5 \sqrt{x+5}-6
$$

$$
\begin{aligned}
& x+2 y=7 \\
& 3 x-y^{2}=18
\end{aligned}
$$

Not a system
A complex system

$$
x=
$$

$$
\begin{aligned}
& x= \\
& y= \\
& =
\end{aligned},
$$

The solution of a system of equations will be a pair of values

$$
\begin{aligned}
& x+2 y=7 \\
& 3 x-y^{2}=18
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y=x^{2}-13
\end{aligned}
$$

You will be given 4 systems. (a,b,c,d)
Follow the instructions on the hand out

INSTRUCTIONS: Solve each of the four SYSTEMS of the equations the following way.

1. • Solve algebraically first.
2. Then graph the system (and make a quick sketch)
3. Explain what the meaning of the algebraic solution tells you about the graph.

You can do the work on the hand out or

 in your own notes. This work will be a good resource for tonight's assignment and upcoming work.b $y=\frac{1}{2} x^{2}+1$

$$
y=2 x-1
$$

(a)

$$
\begin{gathered}
y=-3 x+5 \\
y=-3 x-1 \\
-3 x+5=-3 x-1 \\
5=-1
\end{gathered}
$$

a false statement which means....
NO SOLUTIONS
(a)

$$
\begin{aligned}
& y=-3 x+5 \\
& y=-3 x-1 \\
&-3 x+5=-3 x-1 \\
& 5=-1
\end{aligned}
$$

a false statement which means....
NO SOLUTIONS
(a)

$$
\begin{gathered}
y=-3 x+5 \\
y=-3 x-1 \\
-3 x+5=-3 x-1 \\
5=-1
\end{gathered}
$$

a false statement which means....
NO SOLUTIONS

b

$$
\begin{aligned}
& y=\frac{1}{2} x^{2}+1 \\
& y=2 x-1
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& y=\frac{1}{2} x^{2}+1 \\
& y=2 x-1 \\
& \frac{1}{2} x^{2}+1=2 x-1 \\
& \frac{1}{2} x^{2}=2 x-2 \\
& x^{2}=4 x-4 \\
& x^{2}-4 x+4=0 \\
& x=2 \longrightarrow \begin{array}{l}
x=2 \\
y=3
\end{array}
\end{aligned}
$$

(b)

$$
\begin{gathered}
y=\frac{1}{2} x^{2}+1 \\
y=2 x-1 \\
\frac{1}{2} x^{2}+1=2 x-1 \\
\frac{1}{2} x^{2}=2 x-2 \\
x^{2}=4 x-4 \\
x^{2}-4 x+4=0 \\
x=2 \rightarrow \begin{array}{c}
x=2 \\
y=3
\end{array}
\end{gathered}
$$

What did the Solutiontell US?

The line is tangent to the parabola.

C

$$
\begin{gathered}
y^{2}=x \\
y=x-2
\end{gathered}
$$

Try something
can ask for a hint in a bit
(c)

$$
\begin{aligned}
& \begin{array}{l}
y^{2}=x \\
y=x-2
\end{array} \quad \begin{array}{l}
\sqrt{y^{2}}=\sqrt{x} \\
y= \pm \sqrt{x}(4,2)(1,-1) \\
y=y^{2}-2
\end{array} \\
& 0=y^{2}-y-2 \\
& 0=(y+1)(y-2) \\
& \sum^{y}=\left\{\begin{array}{l}
y=-1
\end{array}\right. \\
& y=2 \quad
\end{aligned}
$$

A line intersects a sideways (sleepy) parabola at two different points
(d)

$$
\begin{aligned}
& 4 x-2 y=10 \\
& y=2 x-5
\end{aligned}
$$

(d)

$$
4 x
$$

$$
4 x-2 y=10
$$

$$
y=\frac{2 x-5}{2}
$$

$$
4 x-2(2 x-5)=10
$$

$$
4 x-4 x+10=10
$$

$$
10=10
$$

true

Assignment
4..... 40-43, 44c

You can replace any question from the above assignment

$$
x^{2}+y^{2}=25
$$ $\begin{aligned} & \text { with a more } \\ & \text { challenging system }\end{aligned} \hat{y}=x^{2}-13$

-

You can check your answer with we
with that
in mind

$$
4-37
$$

a you

C together

(C) combine to create new
(c)

$$
\begin{aligned}
& x^{2}+y^{2}=25 \quad y=x^{2}-13 \text { the difficult } \\
& x^{2}+\left(x^{2}-13\right)^{2}=25 \\
& x^{2}+\left(x^{2}-13\right)\left(x^{2}-13\right)=25 \\
& \text { Yikes ! }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=25 \quad y=x^{2}-13 \quad \text { the ea } \\
& x^{2}=y+13 \\
& (\pm \sqrt{y+13})^{2}+y^{2}=25 \\
& y+13+y^{2}=25 \\
& y^{2}+y-12=0 \\
& x=y=-4 \quad y=3
\end{aligned}
$$

(d)

$$
q=x^{2}
$$

\& two of the four points are

$$
x= \pm \sqrt{9}
$$

$$
x= \pm 3
$$ $(-3,-4)$ and $(3,-4)$ then plug in $y=3$ to find the other two

