Pick Up The Warm up

Any questions on HW??
(1) Use the method of x-intercepts to solve the equation

$$
\begin{gathered}
x^{2}-8 x+10=-2 \sqrt{3-x} \\
x^{2}-8 x+10+2 \sqrt{3-x}=0 \\
x \approx x=2 \\
x \sim
\end{gathered}
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

transformed

$$
y=a(x-h)^{2}+k
$$

$$
\begin{array}{rr}
y=a(x-10)^{2}+9 & \begin{array}{l}
\text { Substitute in a } \\
\text { point on the curve }
\end{array} \\
0=a(20-10)^{2}+9 & \text { (not the vertex) } \\
0 & =100 a+9 \\
& \\
a & =-\frac{9}{100} \\
& =-.09
\end{array}
$$

$$
\begin{aligned}
y= & a(x-10)^{2}+9 \\
0 & =a(20-10)^{2}+9 \\
0 & =100 a+9 \\
& \\
a & (20,0) \\
a & -\frac{9}{100} \\
= & -.09
\end{aligned}
$$

$$
\begin{aligned}
y=a(x-10)^{2}+9 & \text { Substitute in a } \\
0=a(20-10)^{2}+9 & \text { point on the curve } \\
0= & \text { (not the vertex) } \\
& (00 a+9
\end{aligned} \quad(20,0)
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

Monday	Tuesday	Wednesday	Thursday	Friday
Feb 24 4.1.2 Day B Solving Equations and Systems Graphically	25 4.1.3 Finding Multiple Solutions to Systems	26 4.1.4 Use Systems of Equations to Solve Problems	27 Unity Assembly 4.2 Day 1 Solving Inequalities	28 4.2 Day 2 Solving Inequalities
MAR 2 Ch. 4 Review	$\mathbf{3}$ Statistics - Day 1	4 Ch. 4 Test	5 Statistics - Day 2 Last day to turn-in late HW packets	6 Review Day \#1 for Final Exam
9	10	11	12	13
Review Day \#2 for Final Exam Turn-in textbook at end of period.	Final Exam Part 1 Per 1-30 min classes Per 2-90 Min classes Per 3-30 min classes Per 4-90 Min classes Per 5-30 min classes	Final Exam Part 2 Per 1-90 Min classes Per 2-30 min classes Per 3-90 Min classes Per 4-30 min classes Per 5-90 Min classes	No School Grading Day	No School Inservce Day for Teachers Trimester \#3 Starts Monday, March 16th

4-30. Consider the graphs of $f(x)=\frac{1}{2}(x-2)^{3}+1$ and $g(x)=$ $2 x^{2}-6 x-3$ at right. Homework Help
a. Write an equation that you could solve using points A and B. What are the solutions to your equation? Substitute them into your equation to show that they work.
b. Are there any solutions to the equation in part (a) that do not appear on the graph? Explain.
c. Write an equation that you could solve using point C. What does the solution to your equation appear to be? Again, substitute your solution into the equation. How close was your estimate?
d. What are the domains and ranges of $f(x)$ and $g(x)$?

h

\square
(7) $(x-2)^{2}-3=1$

$10 b$

Ans
Validate solutions because sometimes "good" solutions are "naughty"

Approximate solutions when an algebraic solution is not possible.
\square

Calculators upside down/ off

Use algebraic Strategies to solve

$$
\begin{aligned}
& (\sqrt{2 x+3})^{2}=(x)^{2} \\
& \text { square both sides } \\
& 2 x+3=x^{2} \\
& 0=x^{2}-2 x-3 \\
& \vdots \\
& x=3 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& x=-1
\end{aligned}
$$

We should have got two apparent solutions

$$
\begin{aligned}
& x=-1 \\
& x=3
\end{aligned}
$$

now do an algebraic check in the original equation

$$
\sqrt{2 x+3}=x
$$

check $x=-1$
check $x=3$

$$
\begin{aligned}
& \sqrt{2(-1)+3}=(-1) \\
& \sqrt{-2+3} \\
& \sqrt{1} \mid \\
& 1 \neq-1 \\
& x=3
\end{aligned}
$$

$$
\begin{equation*}
\sqrt{2(3)+3}= \tag{3}
\end{equation*}
$$

$$
\sqrt{6+3}
$$

$$
\sqrt{9}
$$

and $x=-1$ is extraneous

$$
\sqrt{2 x+3}=x
$$

check $x=-1$
check $x=3$

$$
\begin{aligned}
& \sqrt{2(-1)+3}=(-1) \quad \sqrt{2(3)+3}=(3) \\
& \sqrt{1}=(-1) \quad \sqrt{9}=3 \\
& 1 \neq-1 \\
& 3=3 \\
& \therefore x=-1 \text { is } \\
& \text { extraneous } \\
& x=3 \frac{i s}{\text { a } o l u t i o r ~}
\end{aligned}
$$

Validate Graphically

Why did the extraneous solutions appear?

If the sideways parabola is completed, it would itersect at $x=-1$

The graph of $y=\sqrt{2 x+3}$ did not intersect because
 $\sqrt{2 x+3}$ has no negative values

Equations with radicals

called radical equations, commonly have solutions that have extraneous solutions

Every group needs
Leader
Runner
Player (1 or 2)

Runners
Be prepared to show proof on part a
Leaders
Get a consensus answer on part b and be prepared to share it with the class.

$$
20 x+1=3^{x}
$$

(a)
what were the solutions?

How did you prove they were solutions?

$$
\begin{aligned}
& x=0 \\
& 20(0)+1=3^{0} \\
& \sum_{\{ }^{z}
\end{aligned}
$$

$$
x=4
$$

$$
\begin{array}{r}
20(4)+1=3^{4} \\
80+1
\end{array} \sum_{81} \sum_{81}
$$

(b) Are the solutions a single number?
or
or be the coordinates of a point?

$$
20 x+1=3^{x}
$$

(b)

The original equation $20 x+1=3^{x}$ only has one variable so the solutions are the x-coordinates of the points of intersection.

$$
x=0 \quad x=4
$$

move on to $\quad 20 x+1=3^{x}$
C
(c)

$$
3^{x}=10+x
$$

$$
\begin{aligned}
& 20 x=3^{x}-1 \\
& x=0 \quad x=4
\end{aligned}
$$

$B \cdot B$

See your
Test

4.... 22-25, 27-28

26 a an optional problem, not for extra credit.... just for the challenge (fun) of it.

