homework help

Pick up the

Powell was trying to solve the quadratic equation
| $x^{2}+2.5 x-1.5=0$. "I think I need to use the Quadratic Formula because of the decimals," she told Walter. Walter replied, " I'm sure there's another way! Can't we rewrite this equation so there aren't any decimals?"

What is Walter talking about? Rewrite the equation so that it has no decimals. You don't need to solve it !

$$
\begin{aligned}
& x^{2}+2.5 x-1.5=0 \\
& 10 x^{2}+25 x-15=0 \\
& 2 x^{2}+5 x-3=0
\end{aligned}
$$

2. Re-write the following three equations (or system), but do not solve them.

$$
\text { a. } 100 x^{2}+100 x=2000
$$

$$
x^{2}+x=20
$$

b. $15 x+10 y=-20 \rightarrow 3 x+2 y=-4$ $7 x-2 y=24$
$7 x-2 y=24$
c. $\frac{1}{3} x^{2}+\frac{x}{2}-\frac{1}{3}=0$
6. $\frac{1}{3} x^{2}+\frac{x}{2}-\frac{1}{3}=0 \cdot 6$

$$
2 x^{2}+3 x-2=0
$$

$$
{ }^{6}()^{6}()^{6}()^{6}()
$$

You do not need to actually solve the equations).
a. $\left(\underline{m}^{2}+5 m-24\right)^{2}-\left(m^{2}+5 m-24\right)=6$

$$
\begin{gathered}
U^{2}-U=6 \\
U^{2}-U-6=0 \\
V=3 \quad U=-2 \\
m^{2}+5 m-24=3 \quad m^{2}+5 m-24=-2
\end{gathered}
$$

$\left(4 x^{2}+4 x-3\right)^{2}=\left(x^{2}-5 x-6\right)^{2}$
a)

$$
\begin{array}{ll}
5 x-2 y=8 & \text { b) } \frac{x y}{x}+\frac{3 x}{x}=\frac{2}{x} \\
-5 x \\
\frac{-2 y}{-2}=\frac{8-5 x}{-2} & y+3=\frac{2}{x} \\
y=-4+\frac{5}{2} x & y=\frac{2}{x}-3 \\
y=\frac{8-5 x}{-2} &
\end{array}
$$

$$
\mathbf{g}
$$

(32) $\left(x^{3} y^{-2}\right)^{-4}$
(b)

$$
\left(x^{3}\right)^{-4}\left(y^{-2}\right)^{-4}
$$

$$
x^{-12} \cdot y^{8}
$$

$$
\begin{aligned}
& -3 x^{2}\left(6 x y-2 x^{3} y^{2} z\right) \\
& -3 x^{2} \cdot 6 x y+3 x^{2} \cdot 2 x^{3} y^{2} z \\
& -18 x^{3} y+6 x^{5} y^{2} z
\end{aligned}
$$

$$
=\frac{y^{8}}{x^{12}}
$$

35 (a) circle radius $12, \quad x^{2}+y_{0}^{2}=r^{2}$
(b) Center $(-1,-4)$ radius 1
\square

The strategy used in the warm up can be described as:

Solving by re-writing

NOTES

Solving equations by re-writing

given
situation

Example 1
(x) $\left.(x-1)\left(\frac{x-3}{x}\right)+\frac{(x) 2(x-1)}{x-1}=\frac{5-x}{x}\right)(x-1)(x)$
multiply by x and $x-1$
$(x-1)(x-3)+2 x=5-x)(x-1)$
$x^{2}-\underline{3 x}-x+3+2 x=5 x-5-x^{2}+x$
$x^{2}-2 x+3=-x^{2}+6 x-5$
$2 x^{2}-2 x+3=6 x-5$
$2 x^{2}-6 x+8=0$
$x^{2}-4 x+4=0$
$\begin{aligned} & \begin{array}{l}a=1 \\ b=-4 \\ c=4\end{array} \quad x=\frac{-(4) \sqrt{(4)^{2}-4(1)(x)}}{2(1)}\end{aligned}=\frac{4+\sqrt{6}}{2}$

Example 2 - Rewrite to a familiar form
$x^{2}+y^{2}+10 x+8 y=8$
$x^{2}+10 x+25+y^{2}+8 y+16=8+25+16$
$(0)^{2}$
$(x+5)^{2}+(y+4)^{2}=49$

25 \quad| r $=7$ |
| ---: |
| Center $(5,-4)$ |

a) Are the functions equivalent?

$$
y=(x-3)(x-5) \quad y=2(x-3)(x-5)
$$

Do they have the same roots?

$$
\text { b) } \begin{array}{rl}
0=(x-3)(x-5) & 0=2(x-3)(x-5) \\
2 \text { PP } & \\
2 P P \\
(x-3)=0 \quad(x-y=0 & x-3=0 \\
x=3 \quad x=5 & x=3
\end{array}
$$

both have same roots
(1) A root is a value that, as an input, makes a function turn to 0
(2) A value of a root is the same as its x-intercep ts)
(3) Functions that have the same roots are not necessarily equilvant.
\square

Assignment:

3 45-46, 49-50, 53-54

Optional
just for
$\rightarrow \underset{\text { Solvethe }}{\text { system }} \cdot \begin{aligned} & \frac{\sqrt{x^{2}-15 x}}{2 y}=5 \\ & 3 \sqrt{x^{2}-15 x}-3 y=27\end{aligned}$
bring me your answer
tomor io w and $\mp^{\prime \prime}$
fun
challenge system.
check 9

So, now the infamous $\# 6$
f. $\frac{\sqrt{x^{2}-15 x}}{2 y}=5$

$$
3 \sqrt{x^{2}-15 x}-3 y=27
$$

Question \# 39 deals with the infamous problem

$$
\begin{aligned}
& 2 y \cdot \frac{\sqrt{x^{2}-15 x}}{2 y}=2 y \cdot 5 \\
& \frac{3 \sqrt{x^{2}-15 x}-3 y}{2}=27
\end{aligned} \Rightarrow \sqrt{x^{2}-15 x}=10 y \quad \begin{aligned}
& x^{2}-15 x \\
& 2
\end{aligned} \quad \Rightarrow=9 \quad y=\frac{\sqrt{x^{2}-15 x}}{10} . \quad \begin{aligned}
& y=\sqrt{x^{2}-15 x}-9
\end{aligned}
$$

$$
\begin{aligned}
& 2 y \cdot \frac{\sqrt{x^{2}-15 x}}{2 y}=2 y \cdot 5 \\
& \frac{3 \sqrt{x^{2}-15 x}-3 y}{3}=\frac{27}{3}
\end{aligned} \Rightarrow \sqrt{x^{2}-15 x}=10 y . \quad \begin{aligned}
& y=\frac{\sqrt{x^{2}-15 x}}{10} \\
& y=\sqrt{x^{2}-15 x}-y=9
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\end{array}\right.
$$

Graciela and Walter realized they had a big mess to try to solve. "Wait," Graciela said. "There's an easier way. Let's use substitution to make this system simpler!"
do parts $b \rightarrow d$

$$
\frac{\sqrt{x^{2}-15 x}}{10}=\sqrt{x^{2}-15 x}-9
$$

\square

