Pick up Warm Up

> While you work, let me know if there are HW questions you want me to go over.

Area models can help rewrite expressions that involve multiplication?

The area model at right relates the expressions $(2 x-3)(3 x+1)$ and $6 x^{2}-7 x-3$.

$+1$| $2 x$ | -3 |
| :---: | :---: |
| $3 x$ | $6 x^{2}$ |
| $2 x$ | |
| $-9 x$ | |

a) Use an area model to find an expression equivalent to $(5 k-3)(2 k-1)$

Area models can help rewrite expressions that involve multiplication?

The area model at right relates the expressions $(2 x-3)(3 x+1)$ and $6 x^{2}-7 x-3$.

a) Use an area model to find an expression equivalent to $(5 k-3)(2 k-1)$

$$
10 k^{2}-11 k+3
$$

b) Use an area model to help you multiply $\left(\mathrm{p}^{2}+3 \mathrm{p}+9\right)(2 \mathrm{p}-1)$

C) Write the last problem as a product being equal to the sum

$$
\left(p^{2}+3 p+9\right)(2 p-1)=2 p^{3}+5 p^{2}+15 p-9
$$

d) Write $2 x^{2}+5 x+2$ as a product (in other words.... factor it!)

FACTORING QUADRATICS that are
Differences of Perfect Squares

$$
\begin{aligned}
& \left.\left.w^{2}-81=w\right]^{2}-9\right]^{2}=(w+9)(w-9) \\
& \left.x^{2}-16 y^{2}=x\right]^{2}-4 y=(x+4 y)(x-4 y) \\
& \left.\left.4 m^{2}-1=12\right]^{2}-\right]^{2}=(2 m+1)(2 m-1) \\
& 4 a^{2}+9 b^{2}=\text { cant be factored }
\end{aligned}
$$

yesterday

7	$\left(\frac{2 x^{5} y^{4}}{8 x y^{3}}\right)^{3}$
Bonnie	$\frac{\text { Dylan }}{\frac{8 x^{4} y^{12}}{3}}$
$512 x^{3} y^{9}$	$\left(\frac{x^{4} y}{4}\right)^{3}$

(5) a $(2 x-3)^{2}+5$
$5\left(\frac{3 x^{2} y}{x^{3}}\right)^{4}$

$$
\begin{aligned}
& (2 x-3)(2 x-3)+5 \\
& 4 x^{2}-6 x-6 x+9+5
\end{aligned}
$$

(6) (a) $\sqrt{4 x^{2} \cdot y^{4}}$
(b) $\sqrt{8 x^{2} y}$
(c) $\sqrt{4 x^{2} y}$
(d) $\sqrt{16 x y^{2}}$
(c) $\sqrt{8 x y^{2}}$
(8) Describe the graph given the equation
a) $y=3$
b) $x=-2$
c) Where do the graphs cross

9

$$
\begin{aligned}
& 342=23 m+b \\
& 147=10 m+b
\end{aligned}
$$

(11) $3,9, \ldots$
Q. Aprith
(b) Geom
(C) Nuither
(2) (a) $25^{-\frac{1}{2}}=$
(b) $\left(\frac{1}{27}\right)^{-1 / 3}=$
(c) $9^{3 / 2}=$
(d) $16^{-3 / 4}=$

Continuing with EQUIVALENT EXPRESSIONS

What are other ways to find equivalent expressions?
textbook $3-17 b$ and c
For each, make two equivalent statements (a)

x^{2}	
$8 x$	

For each, make two equivalent statements
(b)

$$
(x+8)(x+3)=x^{2}+11 x+24
$$

(c)

$$
\begin{aligned}
& (5 x-3)(2 x-4 y+5) \\
& =10 x^{2}-20 x y+12 y+19 x-15
\end{aligned}
$$

The U substitution trick

$$
\begin{aligned}
& \text { Solve the system } 2 x+y^{\prime}=6 \\
& 3 x-2 y^{7}=-5 \\
& \text { Sulame } \boldsymbol{U} \text { for } y \\
& \begin{array}{l}
2 x+U=6^{3} \\
3 x-2 U=-5,
\end{array} \\
& \begin{array}{l}
4 x+20=12 \\
3 x-2 v=-5
\end{array} \\
& 7 x=7 \\
& \begin{array}{c}
2(1)+v=6 \\
V=4 \\
\leftarrow
\end{array} \\
& \text { Solution } \\
& u \rightarrow y^{\top} \\
& x=1 \\
& y=\sqrt[7]{4} \\
& \begin{array}{c}
y^{7}=4 \\
\sqrt[7]{ } \sqrt[4]{ }
\end{array} \\
& y=\sqrt[3]{4}
\end{aligned}
$$

FACTOR

$$
(a+7)^{2}-10(a+7)+25
$$

Substitute \boldsymbol{U} for $a+7$

$$
25 u^{2}
$$

$$
\text { - } 25 v>0
$$

$$
-5 y-5 y
$$

In order to re-write $y^{4}-x^{2}$

$$
\square^{2}-\square^{2}
$$

substitute \mathbf{U} for y^{2}

$$
\begin{gathered}
(U)^{2}-x^{2} \\
(U+x)(U-x) \\
U \rightarrow y^{2} \\
\left(y^{2}+x\right)\left(y^{2}-x\right)
\end{gathered}
$$

$$
\begin{aligned}
& U^{2}-10 U+25 \\
& \begin{array}{|c|c|}
\hline U^{2} & -50 \\
\hline-50 & 25 \\
\hline
\end{array} \\
& 10 \\
& (u-5)(u-5) \\
& a+7 \rightarrow V \\
& (a+7-5)(a+7-5)=(a+2)(a+2) \\
& \text { or }(a+2)^{2}
\end{aligned}
$$

C	$R C G$
$x^{2}+y^{2}=16$	$(x+5)^{2}+(y+3)^{2}=17$
$r=4$	$r=\sqrt{17}$
$\operatorname{center}(0,0)$	center $(-5,-3)$

$$
\begin{aligned}
& x^{2}-6 x+10 y+y^{2}-15=3 \\
& r=?
\end{aligned}
$$

center?
We need the help of a recent friend to convert to standard form Frena \rightarrow Completing the

$$
\left(-\frac{6}{2}\right)^{2}=9
$$

$$
\begin{aligned}
& x^{2}-6 x+10 y+y^{2}-\underset{+15}{15}=\underset{+15}{3} \\
& \left.\begin{array}{l}
x^{2}-6 x+9 \\
(x-3)(x-3) \\
y^{2}+10 y+25
\end{array}\right) \quad\left(\frac{10}{2}\right)^{2}=25 \\
&)^{2}=9 \\
& (x-9+25 \\
& (\operatorname{center}(3-5) \quad r=\sqrt{52}
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}+4 x+12 y+18+y^{2}=32 \\
& x^{2}+4 x+4+y^{2}+12 y+36=14+4+36
\end{aligned}
$$

$\left(\frac{4}{2}\right)^{2}$

$$
=4
$$

$$
\left(\frac{12}{2}\right)^{2}=
$$

$$
\begin{gathered}
(x+2)^{2}+(y+6)^{2}=54 \\
r=\sqrt{54} \\
(-2,-6)
\end{gathered}
$$

36

Assignment

3-23ace , 25, 29c , 30, 31-32, 35

