Homework questions

and a Hershey's
choc. Kiss if you want
(1) $10,17,24, \widehat{31,0, \ldots .0}$ Arithmeticowith a fist term of $/ 0$ Is 10,200 a member of this sequence? $145571=n-1$

$$
\begin{array}{ll}
t_{n}=10+7(n-1) & 10200=10+7(n-1) \\
& 10190=7(n-1)
\end{array}
$$

divide by 7
(2) Simplify (means without negative exponents or parentheses)

$$
n^{4} \frac{n^{6}}{n^{2}}=n^{4} \quad \frac{n^{5}}{n^{-3}}=\frac{n^{5} n^{3}}{1}
$$

$$
\frac{4 x^{2}}{x^{3}}=\frac{4}{x^{3} x^{2}}
$$

$$
=\left(\frac{4}{x^{5}}\right)
$$

3 Without using any type of a calculator, make a quick sketch of each graph below. Label the y-intercept.

(4) Without a GDC, sketch

(5.) s

Suppose $y=200(1.02)^{x}$ represents a (a) population of ants growing by a constant percentage. What percent is the population growing by?

(b) What is the percent growth if the equation was $y=50(1.26)^{x}$?
a) What if it was $y=10000(.7)^{x}$?
(5.) suppose $y=200(1.02)^{x}$ represents a (a) population of ants growing by a constant percentage. What percent is the population growing by?

(b) What is the percent growth if x the equation was $y=50(1.26)^{x}$?

a) What if it was $y=10000(.7)^{x}$?

$$
\begin{aligned}
& 70^{\%} \\
& =100^{\%}-30^{\%} \\
& \downarrow \\
& \% \text { decay (reduction) } \\
& \text { is } 30 \%
\end{aligned}
$$

Simplify without negative exponents
a) $10 x^{3} \cdot x y^{2}=10 x^{4} y^{2}$

$$
n^{-1}=\frac{1}{n} \text { b) }(3 x)^{-1}=\frac{1}{(3 x)^{1}}=\frac{1}{3 x}
$$

c) $\left(x^{3} y\right)^{-2}=\frac{1}{\left(x^{3} y\right)^{2}}=\frac{1}{x^{6} y^{2}}$

$$
\left(x^{3}\right)^{2}
$$

$$
x^{3} \cdot x^{3}
$$

Questions
on HW

Random HW Check Yes or no?

Create An Exponential function from two given points. when the asymptote is $y=0$

TABES
or Graphs $\rightarrow \begin{aligned} & \text { write } \\ & \\ & \text { exponential } \\ & \text { functions }\end{aligned}$
-f He thasymplote is $y=0$

(2)

Graphs to Equations $\quad y=a b b^{*}$

x	
0	320
1	
2	125

3

3. In this question you will expand your skills. Think of it as a puzzle in which you are using clues to create an exponential equation.

(4)

the asymptote wont be $y=0$
or the numbers wont be so fipendly
\square

Exponential Boot Camp

1) $\left(a^{x}\right)^{y}=a^{x y}$
2) $a^{x} \cdot a^{y}=a^{x+y}$
3) $\frac{a^{x}}{a^{y}}=a^{x-y}$
4) $(a b)^{x}=a^{x} b^{x}$
5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
6) $a^{-x}=\frac{1}{a^{x}}$
7) $\frac{1}{a^{-x}}=a^{x}$

Simplify each expression. Leave no expressions with negative exponents.
Example: $\left(x^{2}\right)^{4}=x^{2 \cdot 4}=x^{8}$

1. $x^{4} \cdot x^{2}$

2. $\frac{x^{8}}{x^{6}} x^{2}$
3. $\left(x^{2} y\right)^{3}$
$x^{6} y^{3}$
4. $\left(\frac{x}{y^{3}}\right)^{5}$

5. $y^{-15}=\frac{1}{y^{15}}$
6. $\frac{1}{x^{-15}}=x^{15}$
7. $\left(2 c^{2}\right)^{3}=8 c^{6}$

$$
\begin{aligned}
& \text { 7. } a^{\frac{1}{a^{6}} a^{8}}=a^{-3} \frac{1}{a^{3}} \cdot r^{3} \\
& \therefore \quad \text { 9. } \frac{n^{4} \cdot n^{6}}{n^{8} \cdot n^{2}}
\end{aligned}
$$

10. $4 a^{5} \cdot 3 a^{3}$
11. $\left(\frac{v}{3}\right)^{4} \cdot\left(\frac{5}{v}\right)^{2}=\frac{v^{4}}{81} \cdot \frac{25}{v^{2}}$
$12 a^{8}$

$$
\frac{25 v^{2}}{81} \frac{\downarrow}{81 v^{2}}
$$

12. $\left(x^{-2}\right)^{2}$
$\frac{1}{x^{4}}$

Exponential) boot Camp

1) $\left(a^{x}\right)^{y}=a^{x y}$
2) $a^{x} \cdot a^{y}=a^{x+y}$
3) $\frac{a^{x}}{a^{y}}=a^{x-y}$
4) $(a b)^{x}=a^{x} b^{x}$
5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
6) $a^{-x}=\frac{1}{a^{x}}$
7) $\frac{1}{a^{-x}}=a^{x}$

Simplify each expression. Leave no expressions with negative exponents.
Example: $\left(x^{2}\right)^{4}=x^{2 \cdot 4}=x^{8}$

1. $x^{4} \cdot x^{2}$

Tonight, on HW, there will be a question on solving an absolute value equation
example

$$
|n+3|-5=20
$$

a simpler one first

$$
|x|=9
$$

$$
|n+3|=25
$$

$$
n+3=25 \quad n+3=-25
$$

$$
\begin{array}{rl}
|-9|= & 9 \\
q & 0 \\
& -9
\end{array}
$$

on Friday there will be
a quiz (not a test)
on items from the Appendix

- Sequences (Arithmetic, Geometric)
\Rightarrow Exponential functions
* Some exponents
* Other items you are seeing on assignments from this week
on Friday there will be
a quiz (not a test)
on items from the Appendix

\Rightarrow Exponential functions
* Some exponents
* Other items you are seeing on assignments from this week

Summary GEQUENCES - Explicit Formulas Arithmetic Geometric

Geometric

$$
t_{n}=t_{1}+d(n-1)
$$

Summary SEQUENCES - EXplicit Formulas
$\left.\begin{array}{l}\frac{\text { Arithmetic }}{\text { first ann }}=\text { Geometric } \\ t_{n}=t_{1}+d(n-1)\end{array}\right\}$

Arithmetic Geometric

Arithmetic Geometric

$$
\begin{gathered}
t_{n}=t_{0}+d_{\uparrow}^{d n} \\
0 \text { term } \\
\text { comm } \\
\text { diff. }
\end{gathered}
$$

Summary SEQUENCES - EXplicit Formulas

Summary SEQUENCES - EXplicit Formulas

n can only be a whole number

