Find your new seat

Pick Up the yellow recording sheet if you were not in class on Fri $12 / 20$

Agenda this
week
$\rightarrow 4$ day unit on skill transfer from Algebra 1 (sequences, expon. functions) and exponents
\rightarrow Start Ch. 2 on Friday

Asiatic
Week the break.
\rightarrow 4 day unit on skill transfer 4 day unit on Skill
from Algebra l 1 (sequences, expon. functions)
and exponents
\rightarrow Start Ch. 2 on Friday
first
let's refresh our memories
from before the break.
before we start today's Lesson

Write en explicit formula for each sequence in both first-term and zero-term format.
$160,128,128.8,103.04, \ldots 000$.

$$
1000,1150,1300,1450, \ldots
$$

With each function: underline if its a linear function, circle if its an exponential function and leave blank if it is neither

$$
\begin{aligned}
& \text { an exponential function and leave blank if it is neither } \\
& f(x)=5(2)^{x} \quad f(x)=3 x^{2} \quad f(x)=3 x-2 \quad f(x)=3\left(\frac{1}{4}\right)^{x} \\
& f(x)=3+5(x-1) \quad f(x)=1.2^{2} \quad f(x)=3(1)^{x} \quad y=7 x
\end{aligned}
$$

wait for instructions
Percent Growth
(3) Force the sequence to grow by $14^{\%}$

$$
\begin{aligned}
100^{\%}+14^{\%}= & 114^{\%} \\
& 1.14
\end{aligned}
$$

$$
y=a b^{x}
$$

(4) Force 10,000 to decrease by 2.5% multiplier. 975 $10^{25.64026} 1000, \frac{976}{1}, \frac{950.625}{3}=\frac{926.86}{}$
$975^{0 / 2}$

$$
y=\frac{40000}{39}(.975)^{x}
$$

$$
\text { (5) Start with } 1000^{\text {ANIS }} \text { Write a formula } 100+8.1^{\prime \prime}=108.1^{\prime \prime}
$$ so it grows by $8.1^{\%}$ multiplier 1.081

formula $y=1000(1.081)^{x}$
How many weeks would it take to reach 80,000 ants?

$$
80000=1000(1.081)^{x}
$$

Solve using graph.ralcul. $x \AA 563$ week

$$
y=a b^{x}
$$

Go to your
notes

Sum mar Exponential Functions

x-ax is

Summary Exponential Functions
for for asymptote on the maxis beginning value $x=0$ y-interrept of graph

Sum mar Exponential Functions x-ax is beginning value when $x=0$ graph
Summat Exponential Functions

for asymptote on the
maxis
beginning value
when $x=0$

y-intercept
of
graph

(growth factor

How many of you
could sketch (w/o GDC)

$$
y=6(27)^{x} ?
$$

$$
\text { Kv ll } v_{\text {upside down }}^{G D C^{n} S}
$$

sketch $y=8\left(\frac{2}{3}\right)^{x}-4$
\square

Find the y-intercept analytically.

$$
y=3(2)^{x}
$$

Graph and find the y-intercept.

How many weeks before option I Overtakes option II
\square
what if exponents are negative ????
(a handout)

What if there
were negative exponents?

$$
\begin{array}{ll}
\left(\frac{3}{5}\right)^{-1}=\left(\frac{5}{3}\right)^{1}=\frac{5}{3} & 5^{-1}=\left(\frac{5}{1}\right)^{-1}=\frac{1}{5} \\
\left(\frac{a}{d e}\right)^{-1}=\left(\frac{d e}{a}\right)^{1}=\frac{d e}{9} & \left(\frac{1}{x}\right)^{-1}=\frac{x}{1}=x
\end{array}
$$

$$
\left[\begin{array}{ll}
\left(\frac{1}{4}\right)^{-2}=\left(\frac{4}{1}\right)^{2}=\frac{4^{2}}{1}=16 & \frac{1}{3^{-1}}= \\
\left(\frac{x}{y}\right)^{-3} & =\left(\frac{y}{x}\right)^{3}=\frac{y^{3}}{x^{3}}
\end{array} \frac{\frac{1}{x^{-2}}=\left(\frac{1}{x}\right)^{-2}=\left(\frac{x}{1}\right)^{2}=x^{2}}{\left(\frac{3 x}{y}\right)^{-2}}=\begin{array}{ll}
=\left(\frac{y}{3 x}\right)^{2} & \frac{3}{e^{-2}}=3 e^{2} \\
& =\frac{y^{2}}{9 x^{2}}
\end{array}\right.
$$

$$
\begin{aligned}
& a^{4} b^{-2} \cdot a^{3} \cdot b^{4}=a^{4} a^{3} \cdot b^{-2} b^{4}=a^{7} \cdot b^{2} \\
& x^{4} \cdot y^{-2} \cdot x^{-5} y^{2}=x^{-1} y^{4}=\frac{y^{4}}{x^{1}}=\frac{y^{4}}{x} \\
& \frac{n^{8}}{n^{-2}}=n^{8} \cdot n^{2}=n^{10} \\
& \frac{5 x^{-3}}{x^{6}}=\frac{9}{x^{6} x^{3}}=\frac{5}{x^{9}}
\end{aligned}
$$

Each pair should pick up and work on one handout.

Exponent Review

Boot camp

Manipulating Powers

1) $\left(a^{x}\right)^{y}=a^{x y}$	4) $(a b)^{x}=a^{x} b^{x}$	7) $\frac{1}{a^{-x}}=a^{x}$
2) $a^{x} \cdot a^{y}=a^{x+y}$	5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$	
3) $\frac{a^{x}}{a^{y}}=a^{x-y}$	() $a^{-x}=\frac{1}{a^{x}}$	

4. $\left(\frac{x}{y^{3}}\right)^{5}$
5. y^{-15}
6. $\frac{1}{x^{-15}}$
7. $\frac{a^{6}}{a^{9}}$

$$
\left.\begin{array}{l}
\text { 8. }\left(2 c^{2}\right)^{3} \\
\text { 9. } \frac{n^{4} \cdot n^{6}}{n^{8} \cdot n^{2}} \\
\text { 10. } 4 a^{5} \cdot 3 a^{3}
\end{array} \text { 11. }\left(\frac{v}{3}\right)^{4} \cdot\left(\frac{5}{v}\right)^{2}\right) ~ \$
$$

12. $\left(x^{-2}\right)^{2}$
13. $\left(\frac{2}{x}\right)^{-1}$

Assignment:

is in Appendix A in the back of your book.
A.-=-10, 23, 88, 91, 92, 116, 119, 120
summary GEQUENCES - Explicit Formulas
\square

Geometric

Summary SEQUENCES - EXplicit Formulas
Arithmetic Geometric

$$
t_{n}=t_{1}+d(n-1)
$$

summary SEQUENCES - EXplicit Formulas

Arithmetic Geometric

$$
\begin{gathered}
t_{n}=t_{0}+\underset{\uparrow}{\tau}+d_{n} \\
0 \text { term comm en } \\
\text { doff. }
\end{gathered}
$$

Summary SEQUENCES - EXplicit Formulas

summary SEQUENCES - EXplicit Formulas

n can only be a whole number
\square

C	D
$(-2 A)^{3}$	$(-4 A)^{2}$
$E)$	
$\left(A^{4}\right)^{4}$	$\left(A^{2}\right)^{3}$
H	I
$\left(-3 A^{2}\right)^{2}$	$3 A(2 A)^{2}$
L	$\left(5 A^{5}\right)^{2}$
$\left(-4 A^{4}\right)^{3}$	(M)

