(1) Check your $L C Q$, then turin in.
(2)

QUESTIONS ON HL

1. If $g(x)=x^{2}-5$, find
(b) $x(-5)=$
. a) $g\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-5$

$$
(-5)^{2}-5
$$

$$
=\frac{1}{2} \cdot \frac{1}{2}-5=\frac{1}{4}-5
$$

$$
=-4.75
$$

$$
=25-5=20
$$

c) $g(\underline{h+1})=\dot{x}^{2}-5$

$$
\begin{aligned}
& =(h+1)^{2}-5 \\
& =(h+1)(h+1)-5
\end{aligned}
$$

c) $g(\underline{\underline{h+1}})=$

$$
\begin{aligned}
& (h+1)^{2}-5 \\
& (h+1)(h+1)-5 \\
& h^{2}+h+h+1-5=h^{2}+2 h-4
\end{aligned}
$$

$$
\begin{aligned}
& (x+7)^{2} \neq x^{2}+49 \\
& (x+7)(x+7) \\
& x^{2}+7 x+7 x+49 \\
& =x^{2}+14 x+49
\end{aligned}
$$

2. The graph of $y=x^{2}$ is shown as a dashed curve at right. Estimate the equations of the two other parabolas.

3. Write each expression below in simplest radical form.
$\sqrt{75}+\sqrt{27}$
$\sqrt{x}+2 \sqrt{x}$
$(\sqrt{12})^{2}$
$(3 \sqrt{12})^{2}$
$\downarrow \gg \sqrt{2}$
$\sqrt{25} \sqrt{3}+\sqrt{9} \cdot \sqrt{3}$
$\downarrow \downarrow \sqrt{4}$
$5 \underline{\sqrt{3}}+3 \sqrt{3}$
$8 \sqrt{3}$
4. Write each expression below in simplest radical form.
$\sqrt{75}+\sqrt{27}$
$\sqrt{x}+2 \sqrt{x}$
$(\sqrt{12})^{2}$
$(3 \sqrt{12})^{2}$
5. Write each expression below in simplest radical form.

6. Write each expression below in simplest radical form.
$\sqrt{75}+\sqrt{27}$
$\downarrow \downarrow$
$\sqrt{25} \cdot \sqrt{3}+\sqrt{9} \cdot \sqrt{3}$
$\downarrow \downarrow$
$\downarrow \sqrt{3}+3 \sqrt{3}$
$5 \sqrt{3}$
$\sqrt{x}+2 \sqrt{x}$
$3 \sqrt{x}$
$8 \sqrt{3}$
$(\sqrt{12})^{2}$
$(3 \sqrt{12})^{2}$

$3^{2} \cdot \sqrt{12}^{2}$
$9 \cdot 12$
108
(6) Parent Graph Name:
v) Parent Equation:

$$
y=\frac{-1}{x^{2}}
$$

w) Description of Transformation:
x) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
y) Write coordinates of the new locator point.
z) Write Transformation function, $T(x)$

\qquad
aa) List domain of $T(x)$ \qquad List range of $T(x)$
bb) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
Yesterday's HWV

Today

"A missing Transformation"

HW Lottery

Just Observe for a moment

What kind of geometric transformation have you made when you replace

$$
\begin{aligned}
& f(x) \quad \text { with } \quad f(x)+k \\
& y=x^{2} \quad y=x^{2}+3 \\
& y=\sqrt{x} \quad y=\sqrt{x}-30 \\
& y=\frac{1}{x} \\
& \\
& y=\frac{1}{x}+7
\end{aligned}
$$

What kind of Geometric Transformations occur when you replace

$$
f(x) \text { with }=f(x)
$$

$$
\begin{array}{ll}
y=x^{3} & y=-x^{3} \\
y=|x| & y=-|x| \\
& y=-\sqrt{x}
\end{array}
$$

$$
y=\sqrt{x}
$$

transformations happen
of you replace
$f(x)$ with $f(x-h)$?

$$
\begin{array}{ll}
y=x^{2} & y=(x-3)^{2} \\
y=a b^{x} & y=a b^{x+4}
\end{array}
$$

$$
y=\frac{1}{x} \quad y=\frac{1}{x+3}
$$

What kind if :

$$
f(x) \text { to } a \cdot f(x)
$$

$$
\begin{array}{ll}
f(x)=x^{2} & f(x)=6 x^{2} \\
f(x)=\sqrt{x} & f(x)=5 \sqrt{x} \\
f(x)=\frac{1}{x} & f(x)=10 \cdot \frac{1}{x}
\end{array}
$$

What type of transformation takes place when you...

$$
\begin{aligned}
\text { replace } f(x) \quad \text { with } f(-x) \\
y=(x)^{3} \text { with } y=(-x)^{3} \\
y=\frac{1}{x} \text { with } y=\frac{1}{(-x)}
\end{aligned}
$$

GDP

$$
\begin{aligned}
& y_{2}=x^{3} \text { with } y_{1}=(-x)^{3} \\
& y_{2}=\frac{1}{x} \text { with } y_{1}=\frac{1}{(-x)}
\end{aligned}
$$

Summary
Replacing x with $(-x)$ creates a reflection across the y-axis

Examples $y=x^{3} \Longrightarrow y=(-x)^{3}$

$$
y=\frac{1}{x} \Rightarrow y=\frac{1}{(-x)}
$$

example

$$
f(x)=x^{2}+8 x+7
$$

Sketch $f(x)$

$$
f(x)=x^{2}+8 x+7
$$

Sketch $f(x)$ and $f(-x)$ and label

example

$$
f(x)=x^{2}+8 x+7
$$

Sketch $f(x)$ and $f(-x)$ and label

Sketch a circle that has the

 equation......$$
\begin{aligned}
& (x+3)^{2}+(y-1)^{2}=4 \\
& (x)^{2}+(y)^{2}=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { IUEIIIIy tie ceinei ailu iauius Ui ec } \\
& \text { 1) }(\cdot)^{2}+(\quad)^{2}= \\
& (x+7)^{2}+(y-2)^{2}=4
\end{aligned}
$$

2) $(: \quad,)^{2}+(, \quad)^{2}=$.

3)

$$
y= \pm \sqrt{25-x^{2}}
$$

$$
\begin{aligned}
& y=\sqrt{25-x^{2}} \\
& y=-\sqrt{25-x^{2}}
\end{aligned}
$$

Graph $(x-4)^{2}+(y+5)^{2}=9$

1. Explain the difference between the graphs of $f(x)=\frac{1}{x}$ and $g(x)=4\left(\frac{1}{x+5}\right)+7$

$$
\begin{aligned}
& g(x) \text { is } 7 \text { units higher than } f(x) \text {, } \\
& \text { } \begin{array}{l}
\text { is units further left than } f(x) \\
\text { and stretched vertically } 4 \text { times more } \\
\text { than } f(x)
\end{array}
\end{aligned}
$$

2. For each of the functions below:
a. Sketch $y=f(x)$, without your calculator.
b. Then sketch, with a dashed curve, $f(-x)$. If you were absent last class, this just means to replace every (x) with $(-\mathrm{x})$ in the function.

$$
\begin{aligned}
& f(x)=-|x+2|-1 \\
& \text { then sketch } \\
& f(-x)
\end{aligned}
$$

3. Find the x - and y-intercepts for the following parabolas
a. $y=(x+12)^{2}-144$

$$
y=(x-8)^{2}-4 \quad y=(0-8)^{2}-4
$$

$$
\begin{aligned}
y \text {-int } y & =(0+12)^{2}-144 \\
& =144-144=0
\end{aligned}
$$

X-intercept(s)

$$
(x+12)^{2}-144=0
$$

$$
\begin{aligned}
& (x-8)^{2}-4=0 \\
& \sqrt{(x-8)^{2}}=\sqrt{4}
\end{aligned}
$$

$$
\sqrt{(x+12)^{2}}=\sqrt{144}
$$

$$
x-8= \pm 2
$$

$$
\underset{\substack{-12}}{x+12= \pm 12}
$$

$$
\begin{array}{cc}
x-8=2 & x-8=-2 \\
+8 & +8
\end{array}
$$

$$
x=x=\pi 4-24
$$

$$
X=10 \quad X=(\infty
$$

3. Find the x - and y-intercepts for the following parabolas

$$
\begin{aligned}
& \text { a. } y=(x+12)^{2}-144 \\
& (x+12)^{2}-144=0 \\
& \frac{y \text {-int }}{\operatorname{set} x=0} \quad \frac{x-\text { int }}{\operatorname{set} y=0} \\
& \begin{aligned}
y & =(0+12)^{2}-144 \\
& =12^{2}+144
\end{aligned} \\
& x+12= \pm 12 \\
& \begin{array}{r}
x+12=12 \\
-12-12
\end{array} \\
& x+12=-12 \\
& 144-144 \\
& \bigcirc \\
& x=0 \quad x=-24 \\
& \text { (®, } 0) \\
& \binom{0,0}{\lambda}\binom{-24,0}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& y=(x-8)^{2}-5 \\
& (x-8)^{2}-5=0 \\
& \sqrt{(x-8)^{2}}=\sqrt{5} \\
& x-8= \pm \sqrt{5} \\
& x=8 \pm \sqrt{5}
\end{aligned}
$$

sider the equation $(x-5)^{2}+(y-8)^{2}=16$. What can you tell about the graph by looking at the equation?
a. It's a \qquad Circle with a center $(5,8)$ and radius is 4
b. Graph it

4. Consider the equation $(x-5)^{2}+(y-8)^{2}=16$. What can you tell about the graph just by looking at the equation?
a. It's a C ivcle
with a center $(5,8)$ and radius is 4

Parent Graph Name: Cubic
a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

Parent Graph Name: Parabola

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$

\qquad
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

5 Parent Graph Name: Hyperbola (reciprocal)
o) Parent Equation:
p) Description of Transformation:

Translate 3 whits right and 5 units up
q) Sketch Transformed Graph, $T(x)$
r) Write coordinates of the new locator point.
s) Write Transformation function, $T(x)$

t) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
u) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
(6) Parent Graph Name:
v) Parent Equation: $y=\frac{-1}{x^{2}}$
w) Description of Transformation:
x) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
y) Write coordinates of the new locator point.
z) Write Transformation function, $T(x)$

\qquad
aa) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
bb) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

Work Backwards starting from graph

Parent Graph Name:

a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
work back wands

(8) Parent Graph Name:

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$
\qquad
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

DIRECTIONS: Simplify the following expressions. The I complete the statement correctly.

1. $\left(3 x^{2}\right)\left(10 x^{4}\right)$

Irena Sendler was born in \qquad Poland in 1910.
a. $13 x^{8} \quad$ Krakow
b. $30 x^{8} \quad$ Lodz
c. $30 x^{6}$ Warsaw
3. $\left(5 m^{3} n^{7}\right)\left(8 m n^{4}\right)$

Sendler was suspended from the school as a result of her protest against the \qquad ; a form of segregation in the seating of students.
a. $40 \mathrm{~m}^{3} \mathrm{n}^{11}$
gender divide system
b. $40 \mathrm{~m}^{4} \mathrm{n}^{11}$ ghetto-bench system
c. $13 \mathrm{~m}^{5} \mathrm{n}^{10}$ nationalized row system
2. $\left(a^{5} b^{7}\right)\left(a^{3} b^{6}\right)$

She studied \qquad at Warsaw University.
a. $\quad a^{533} b^{76}$ education
b. $\mathrm{a}^{15} \mathrm{~b}^{42} \quad$ medicine
c. $a^{88} b^{13} \quad$ Polish literature
4. $\left(\frac{1}{2} x^{5} y^{3}\right)\left(4 x^{2} y\right)(3 x)$

During World War II, she served as head of the Jewish children's section of Zegota, an underground \qquad organization.
a. $2 x^{7} y^{3}$ financial aid
b. $\quad 6 x^{8} y^{4}$ resistance
c. $6 x^{7} y^{3}$ social welfare

```
5. (-3x d)
d) Undercover as a plumbing specialist, Sendler
8. smuggled Jewish irfants out of the ghettos in a
a. -9x 8 burlap sack
b. 9x6 raincoat
c. 9x b
7. (5xy )}\mp@subsup{)}{}{2}(2\mp@subsup{x}{}{5}\mp@subsup{y}{}{2}\mp@subsup{)}{}{3
    When she was discovered by the Nazis she
    was beaten and suffered
    a. 200x 17 y 12 broken arms and legs
    b. 10x [12 y }\mp@subsup{}{}{10}\mathrm{ internal bleeding
    c. 150x x5y loss of hearing
```

6. $\left(\frac{1}{4} a^{f} b^{5}\right)^{2}$

With the assistance of other Zegota members, Sendler saved roughly \qquad Jewish children during the Holocaust.
a. $\frac{1}{4} a^{8} b^{10}$25
b. 16a6b7 250
c. $\frac{1}{16} a^{9} b^{10}$

2,500
8. $\left(\frac{1}{2} m^{3} n^{2}\right)^{2}(8 m n)\left(-2 m^{4} n^{6}\right)$

In 1999, high school students in Kansas staged
a play based on Sendler's life, titled \qquad which was adapted to a Hollywood film.
a. $\quad 4 m^{8} n^{6}$
Holocaust Heroine
b. $-4 \mathrm{~m}^{11 \mathrm{n}^{11}} \quad$ Life in a Jar
c. $-8 \mathrm{~m}^{16} \mathrm{n}^{12} \quad$ Underwraps

