

c)
$$g(h+1) = \frac{h+1}{5}$$

 $h+1 + h+1 - 5$
 $h^2 + h + h + 1 - 5 = h^2 + 2h - 4$

$$(x+7) \neq x^{2} + 49$$

$$(x+7)(x+7)$$

$$x^{2} + 7x + 7x + 49$$

$$= x^{2} + 14x + 49$$

2. The graph of $y = x^2$ is shown as a dashed curve at right. Estimate the equations of the two other parabolas.

3. Write each expression below in simplest radical form.

 $\sqrt{x} + 2\sqrt{x}$

$$\sqrt{75} + \sqrt{27}$$
 $\sqrt{25} \cdot \sqrt{3} + \sqrt{19} \cdot \sqrt{3}$
 $5\sqrt{3} + \sqrt{3}\sqrt{3}$

3. Write each expression below in simplest radical form.

$$\sqrt{75} + \sqrt{27} \qquad \qquad \sqrt{x} + 2\sqrt{x} \qquad \qquad \left(\sqrt{12}\right)^2$$

$$\sqrt{x} + 2\sqrt{x}$$

$$\left(\sqrt{12}\right)^2$$

$$(3\sqrt{12})^{2}$$

3. Write each expression below in simplest radical form.

$$\sqrt{75} + \sqrt{27}$$

$$\sqrt{x} + 2\sqrt{x}$$

$$\sqrt{5} + \sqrt{3} + \sqrt{3}$$

$$\sqrt{3} \times \sqrt{3} + \sqrt{3}$$

$$\sqrt{x} + 2\sqrt{x}$$

$$\left(3\sqrt{12}\right)^2$$

$$\sqrt{3} + \sqrt{9} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}$$

3. Write each expression below in simplest radical form.

$$\left(\sqrt{12}\right)^2$$

$$(3\sqrt{12})$$

(6) Parent Graph Name:

- v) Parent Equation:
- w) Description of Transformation:
- x) Sketch Transformed Graph, T(x)(Parent is already shown)
- y) Write coordinates of the new locator point.
- z) Write Transformation function, T(x)

- bb) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

Vesterday's HW

Compare your HW

Today :

Notes

"A missing Transformation"

HW Lottery

Just Observe for a moment

$$f(x) \quad whh \quad f(x) + K$$

$$y = x^{2} \quad y = x^{2} + 3$$

$$y = \sqrt{x} \quad y = \sqrt{x} - 30$$

$$y = \frac{1}{x}$$

 $y = \frac{1}{x} + 7$

$$f(x)$$
 with $-f(x)$

$$A = |x| \qquad A = -|x|$$

$$A = -|x| \qquad A = -|x|$$

Notes on 3.2.3

What kind of geometric transformations happen

of you replace

$$f(x)$$
 with $f(x-h)$?

$$y = x$$
 $y = (x-3)^{2}$
 $y = 0$ $y = 0$

$$A = \frac{X}{1}$$
 $A = \frac{X+3}{1}$

What kind if .

$$t(x) = X_S \qquad t(x) = QX_S$$

$$f(x) = \sqrt{x}$$
 $f(x) = 5\sqrt{x}$

$$t(x) = \frac{x}{1}$$
 $t(x) = 10 \cdot \frac{x}{1}$

What type of transformation takes place when you...

replace
$$f(x)$$
 with $f(-x)$

with
$$f(-x)$$

$$y = (x)^3$$
 with $y = (-x)^3$

$$y = \frac{1}{(x)}$$
 with $y = \frac{1}{(-x)}$

GDC

$$y = x^3$$
 with $y = (-x)^3$
 $y = \frac{1}{x}$ with $y = \frac{1}{(-x)}$

$$J_2 = \frac{1}{\sqrt{2}} \quad \omega h \qquad J_1 = \frac{1}{(-x)^2}$$

Summary

NOTES

Replacing x with (-x) creates a reflection across the

y-axis

examples $y = x^3 \implies y = (-x)^3$ $y = \frac{1}{2} \implies y = \frac{1}{2}$

background
$$y-20=(x)$$

$$y=20=(x)$$

$$y=20=(x)$$

Sketch a circle that has the equation.....

$$(X+3)^{2} + (y-1)^{2} = 4$$

 $(X+3)^{2} + (y)^{2} = 4$

$$(x)^{2} + (y)^{2} = 4$$

Center 7 2 YA Radius 2

idelitily the center and radius of ea

 $(X+7)^2+(y-2)^2=4$

Graph
$$x^{2} + y^{2} = 25 \text{ on your calculator}$$

$$\sqrt{y^{2}} = \sqrt{25 - x^{2}}$$

$$y = \pm \sqrt{25 - x^{2}}$$

$$y = \sqrt{25 - x^{2}}$$

$$y = -\sqrt{25 - x^{2}}$$

Graph
$$(x-4)^2 + (y+5)^2 = 9$$

Warm Up #2

(to help review)

$$A = -|X+5|-1$$

1. Explain the difference between the graphs of $f(x) = \frac{1}{x}$ and $g(x) = 4(\frac{1}{x+5})$ +7

g(x) is 7 units higher than f(x),
5 units further left than f(x),
and stretched vertically 4 19 mes more
than f(x)

- 2. For each of the functions below:
 - a. Sketch y = f(x), without your calculator.
 - b. Then sketch, with a dashed curve, f(-x). If you were absent last class, this just means to replace every (x) with (-x) in the function.

3. Find the x- and y-intercepts for the following parabolas

a.
$$y = (x + 12)^2 - 144$$

 $y = (x + 12)^2 - 144$
 $y = (x + 12)^2 - 144$

$$(x+12)^{2}-144=0$$

$$\sqrt{\frac{1}{15}} = \frac{15}{15}$$
 $\sqrt{\frac{1}{15}} = \frac{15}{15}$

$$X = \emptyset$$
 $X = \mathbb{Z} - 24$

$$y = (x - 8)^{2} - 4$$

$$= (0 - 8)^{2} - 4$$

$$= (64 - 4) = 60$$

$$(x-8)^2-4=0$$

$$(x-8)^2=4$$

$$X - 8 = \pm 2$$

a.
$$y = (x + 12)^2 - 144$$

$$y = (0+12)^2 - (44)^2$$

-144
$$(x+12)^2 - 144 = 0$$

Set $y=0$ $(x+12)^2 = 144$

$$V_{417} = \pm 12$$

$$X+12=12$$
 $X+12=-12$ -12

$$\chi = -24$$

$$\left(\begin{array}{cc} 0 & 0 \end{array}\right)$$

$$\begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} -74 & 0 \end{pmatrix}$$

$$y = (x-8)^2 - 5$$

$$(x-8)^2 - 5 = 0$$

$$\sqrt{(x-8)^2} = \sqrt{5}$$

$$x-8 = \pm \sqrt{5}$$

$$x = 8 \pm \sqrt{5}$$

$$(8+15, 0)$$

sider the equation $(x-5)^2 + (y-8)^2 = 16$. What can you tell about the graph by looking at the equation?

a. It's a Circle

with a center (5, 8)

and radius is _____

b. Graph it

4. Consider the equation $(x-5)^2 + (y-8)^2 = 16$. What can you tell about the graph just by looking at the equation?

a. It's a $\frac{1}{5}$ 8 with a center $\frac{5}{8}$

and radius is

.

Assignment

2 128a, 129-130, 139, 146a

Parent Graph Name: Cubic

- a) Parent Equation:
- b) Description of Transformation:

- d) Write coordinates of the new locator point.
- e) Write Transformation function, T(x)

_List range of T(x) _

Parent Graph Name:

Parabola

- h) Parent Equation:
- i) Description of Transformation:
- Sketch Transformed Graph, T(x)(Parent is already shown)
- k) Write coordinates of the new locator point.
- I) Write Transformation function, T(x)

m) List domain of T(x) _____List range of T(x) _____

Parent Graph Name:

- o) Parent Equation:
- p) Description of Transformation: Translate 3 Units right and 5 units up
- q) Sketch Transformed Graph, T(x)
- r) Write coordinates of the new locator point.
- s) Write Transformation function, T(x)

- u) List equation(s) of any asymptotes of T(x) h) Describe any symmetry
- t) List domain of T(x) _____List range of T(x) ____

13			
(6)	Parent	Graph	Name:

- v) Parent Equation:
- w) Description of Transformation:
- x) Sketch Transformed Graph, T(x)(Parent is already shown)
- y) Write coordinates of the new locator point.
- z) Write Transformation function, T(x)

aa) List domain of T(x) ______List range of T(x) _

bb) List equation(s) of any asymptotes of T(x)h) Describe any symmetry Work Backwards Starting from graph

Name_

Parent Graph Name:

- a) Parent Equation:
- b) Description of Transformation:
- c) Sketch Transformed Graph, T(x)(Parent is already shown)
- d) Write coordinates of the new locator point.
- e) Write Transformation function, T(x)

f) List domain of T(x) _____List range of T(x) ____

g) List equation(s) of any asymptotes of T(x)

h) Describe any symmetry

work backwards

Parent Graph Name:

- h) Parent Equation:
- i) Description of Transformation:
- Sketch Transformed Graph, T(x)(Parent is already shown)
- k) Write coordinates of the new locator point.
- I) Write Transformation function, T(x)

m) List domain of T(x) _____List range of T(x) ____

- n) List equation(s) of any asymptotes of T(x) h) Describe any symmetry

DIRECTIONS: Simplify the following expressions. The v complete the statement correctly. $(3x^2)(10x^4)$ Irena Sendler was born in ____, Poland in 1910. a. 13x8 Krakow b. 30x8 Lodz Warsaw 30x6 3. $(5m^3n^7)(8mn^4)$ Sendler was suspended from the school as a result of her protest against the ____; a form of segregation in the seating of students. a. 40m³n¹¹¹
 b. 40m⁴n¹¹ gender divide system ghetto-bench system c. 13m⁵n¹⁰ nationalized row system

2,	$(a^5b^7)(a^3b^6)$	
	She studied	at Warsaw University.
	a. a ⁵³ b ⁷⁶	education
	b. a15b42	medicine
	c. a8b13	Polish literature
4.	$(\frac{1}{2}x^5y^3)(4x^2y)(3x)$	
20		War II, she served as head of
		dren's section of Zegota, an
		organization.
	a. 2x ⁷ y ³	financial aid
	b. 6x8y⁴	resistance
	c. 6x ⁷ y ³	social welfare
ĺ		

- 6.	$(\frac{1}{4}a^4b^5)^2$					
	With the assistance of other	Zegota members,				
8-608/53	Sendler saved roughly	Jewish children				
	during the Holocaust.					
	a. $\frac{1}{4}a^8b^{10}$ 25		11			
	b. 16a ⁶ b ⁷ 250		2			
	c. $\frac{1}{16}a^8b^{10}$ 2,50					
	16					
			3.7			
8.	$(\frac{1}{2}m^3n^2)^2(8mn)(-2m^4n^6)$					
	In 1999, high school students in Kansas staged					
	a play based on Sendler's life, titled,					
	which was adapted to a Hollywood film.					
		ocaust Heroine				
		in a Jar				
	c8m ¹⁴ n ¹² Una	lerwraps				

