

Do the Warm Up

front side only

- (1) Factor $10^2 49$ (HINT: Use difference of Saures) (117) [1-7]

 Eactor $10x^2 25 = (4x + 5)(4x 5)$

- With each of the parent functions below, write a transformed (3) function that has a vertical stretch of 7, a horizontal shift left 20, and a vertical shift down 11.
 - Parent a) y = (x)
 - b) y = 1
 - c) y = 3x

Transformation T

$$y = 7 | x + 20 | - | |$$
 $7 \cdot \frac{1}{x+20} - | |$
 $7 \cdot \frac{1}{x+20} - | |$

$$y = 7(3)^{x+70} - 11$$

The general form of a transformation of $y=x^2$ is y = a(x-h)2+k, what is the general form

for a)
$$y = \sqrt{x}$$
 $y = \alpha \sqrt{x-h} + k$

b)
$$y = \frac{1}{x}$$
 $y = \alpha(x-h) + k$

6
$$f(x) = \frac{\sqrt{x+4}}{3} - 2$$

y-intercept

X-Intercept(s)

$$\begin{array}{cccc}
(1) & 2x - 4y = 4 \\
3x + 5y = 3
\end{array}$$

Assignment 2.2.1

Name

(i) Without a GDC, sketch each function (remember too identify the parent first) $y = \sqrt{x+4}$ $y = (x-5)^3$ $y = -\sqrt{x-2} - 3$ $y = \frac{1}{5}(\frac{1}{x}) + 3$

Find both the y-intercepts and x-intercepts algebraically of $y = (x-3)^2 - 1$ $\frac{y - int}{x}$

3 Complete the square to convert to graphing form (try if you wans, to do so wishows the box)

 $y = x^2 - 4x + 9$

(4). complete the square to convert to graph $y = 2x^2 - 16x + 30$ form

Tacioning binorniale

Factor each binomial equation (using the Difference of Squares Shortcut)

Example: $9x^2 - 4 = (3x + 2)(3x - 2)$

1.
$$4x^2 - 1 =$$

3.
$$36x^2 - 9 =$$

5.
$$25x^2 - 4 =$$

2.
$$x^2 - 9 =$$

4.
$$100x^2 - 81 =$$

6.
$$81x^2 - 121 =$$

5.
$$25x^2 - 4 =$$

6.
$$81x^2 - 121 =$$

7.
$$x^2 - 16 =$$

8.
$$144x^2 - 16 =$$

9.
$$x^2 - 25 =$$

10.
$$625 - 16x^2 =$$

11.
$$100 - x^2 =$$

12.
$$x^2 - 36 =$$

13.
$$121x^2 - 49 =$$

14.
$$49x^2 - 16 =$$

Cross out the correct answers below. Use the remaining letters to complete the statement.

(x+13)(x-13)	16(3x-1)(3x-1)	(x=4) (x+4) se	(6x+5)(6x-5)	(25 - 4x)(25 + 4x)	(x+1)(x-1)
THE	SUM	OFA	PRO	QUO	DUC
(9 + x)(9 - x)	9(2x-1)(2x+1)	(x+7)(x-7)	(2x+1)(2x-1)	(9x+1)(9x-1)	(x+2)(x-2)
TOF	TIE	THE	NTA	SUM	AND
(10 - x)(10 + x)	(5x+3)(5x-3)	(x-5)(x+5)	(8x+1)(8x-1)	(11x-7)(11x+7)	(x-6)(x+6)
WAS	DIF	HAS	FER	MAN	NER
(x + 18)(x - 18)	(10x - 9)(10x + 9)	(x-3)(x+3)	(5x-2)(5x+2)	(7x+11) (7x-11)	(x+8)(x-8)
ENC	THA	TIS	MYP	EOF	THE
(x + 15)(x - 15)	(9x - 11)(9x + 11)	(x+9)(x-9)	(3x+2)(3x-2)	(7x-4)(7x+4)	(x+9)(x-9)
SQU	ROB	ARE	ROO	LEM	TS.

15. The factored form of the difference of the two squares is

g

but first
HW lottery

brainstorm

all of the function types you can think of cubic

expon.

abs. Value

1 Mear

Sq. root

quadratic reciprocal

lines

parabolas

hyperbolas

cubics

square root

exponentials

absolute value

Function Familiarity recognition test L NOT a real test

I give you the function,

you sketch

on scratch paper is fine

$$y = \{x\}$$

$$y = \sqrt{x}$$

$$y = -\sqrt{x}$$

$$y = \frac{1}{x}$$

$$y = \chi^3$$

$$y = x$$

$$y = -\chi^3$$

$$A = (X + 1)^{3}$$

back side of Warm UP

- I Identify the parent function shown on the graph
- 2. Find the locator point of the graph shown.
- 3. Write the function that matches the transformation shown

g

h.
$$y = \sqrt{(x-3) + 6}$$

Parabola

$$\sqrt{=\times^2}$$

Parapola
$$y = x^{2}$$

$$y = a(x-h)^{2} + k$$

The locator point (h, k) is at the vertex of a parabola

Cubic

$$y = x^3$$

$$y = x^3$$

$$y = o(x-h) + k$$

The locator point (h, k) is at the inflection point.

Hyperbola

$$y = \frac{1}{x}$$

$$y = \frac{\alpha}{x-h} + k$$

The locator point (h, k) is in between the two branches.

BB

2-107-109, 110a, 111, 113, 119

The Chapter 2 test is Thursday