(1) Let Me know right aw ax if have any HW \&uestions
(2)

Do the Warm Up

(1) Factor $1_{0}^{2}-49$ (hint vive difference of squares) $(n+0)(n-7)$ Factor $16 x^{2}-25=(4 x+5)(4 x-5)$
(2) What is the parent function of $y=(x-3)^{2}+6$

$$
\begin{array}{lllll}
n & \cdots & \cdots & \cdots & y=5 \sqrt{x+1}-7 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & =2\left(\frac{1}{x+10}\right)-18
\end{array}
$$

(3) With each of the parent functions below, write a transformed function that has a vertical stretch of 7 , a horizontal shift left 20, and a vertical shift down '11.
a) Parent

$$
y=|(x)|
$$

b) $y=\frac{1}{(x)}$
c) $y=3^{x}$

Transformation

$$
y=7|x+20|-11
$$

$7 \frac{1}{x+20}-11$ or $\frac{7}{x+20}-11$
$y=7(3)^{x+20}-11$
(4) The general form of a transformation of $y=x^{2}$ is $y=a(x-h)^{2}+k$. What is the general form for
a) $y=\sqrt{x}$

$$
y=a \sqrt{x-h}+k
$$

b) $y=\frac{1}{x}$

$$
y=a\left(\frac{1}{x-h}\right)+k
$$

HW

$$
\text { (6) } \quad f(x)=\frac{\sqrt{x+4}}{3}-2
$$

$$
\begin{aligned}
& y \text {-intercept } \\
& x \text {-intercept(s) }
\end{aligned}
$$

(7) $2 x-4 y=4$

$$
3 x+5 y=3
$$

Name
(1) Without a GDC, sketch each function (remember to identify the parent first) $y=\sqrt{x+4} \quad y=(x-5)^{3} \quad y=-\sqrt{x-2}-3 \quad y=\frac{1}{5}\left(\frac{1}{x}\right)+3$

2) Find both the y-intercepts and x-intercepts algebraically of $y=(x-3)^{2}-1$

$$
y \text {-int }
$$

$$
\underline{x-\operatorname{in} t}
$$

(3) Complete the square to convert to graphing form (try, if you wang, to do so
withevit the box)

$$
y=x^{2}-4 x+9
$$

(4). Complete the square to convert to graph

$$
y=2 x^{2}-16 x+30
$$

actor each binomial equation(using the Difference of Squares Shorifats) =xample: $9 x^{2}-4=(3 x+2)(3 x-2)$

1. $4 x^{2}-1=$
2. $x^{2}-9=$
3. $36 x^{2}-9=$
4. $100 x^{2}-81=$
5. $25 x^{2}-4=$
6. $81 x^{2}-121=$
7. $25 x^{2}-4=$
8. $81 x^{2}-121=$
9. $x^{2}-16=$
10. $144 x^{2}-16=$
11. $x^{2}-25=$
12. $625-16 x^{2}=$
13. $100-x^{2}=$
14. $x^{2}-36=$
15. $121 x^{2}-49=$
16. $49 x^{2}-16=$

Cross out the correct answers below. Use the remaining letters to complete the statement.

$\begin{gathered} (x+13)(x-13) \\ \text { THE } \end{gathered}$	$\begin{gathered} 16(3 x-4)(3 x-1) \\ \text { SUM } \end{gathered}$	$\begin{gathered} \text { (x) }=44)(x+4)-30 \\ \text { OFA } \end{gathered}$	$\begin{gathered} (6 x+5)(6 x-5) \\ \text { PRO } \end{gathered}$	$\begin{gathered} (25-4 x)(25+4 x) \\ Q U O \\ \hline \end{gathered}$	$\begin{gathered} (x+1)(x-1) \\ \text { DUC } \end{gathered}$
$\begin{gathered} (9+x)(9-x) \\ \text { TOF } \end{gathered}$	$9 \cdot(2 x-1)(2 x+1)$ TE	$(x+7)(x-7)$ - THE	$\begin{gathered} (2 x+1)(2 x-1) \\ \text { NTA } \end{gathered}$	$\begin{gathered} (9 x+1)(9 x-1) \\ \text { SUM } \\ \hline \end{gathered}$	$\begin{gathered} (x+2)(x-2) \\ \text { AND } \end{gathered}$
$\begin{gathered} (10-x)(10+x) \\ \text { WAS } \end{gathered}$	$\begin{gathered} (5 x+3)(5 x-3) \\ \text { DIF } \end{gathered}$	$\begin{gathered} (x-5)(x+5) \\ \text { HAS } \end{gathered}$	$\begin{gathered} (8 x+1)(8 x-1) \\ \operatorname{FER} \\ \hline \end{gathered}$	$\begin{gathered} (11 x-7)(11 x+7) \\ \text { MAN } \end{gathered}$	$\begin{gathered} (x-6)(x+6) \\ \text { NER } \end{gathered}$
$\begin{gathered} (x+18)(x-18) \\ \text { ENC } \end{gathered}$	$(10 x-9)(10 x+9)$	$\begin{gathered} (x-3)(x+3) \\ \text { IIS } \end{gathered}$	$\begin{gathered} (5 x-2)(5 x+2) \\ \text { MYP } \\ \hline \end{gathered}$	${\underset{E O F}{(7 x+11)(7 x-11)}}_{E O}$	$\begin{gathered} (x+8)(x-8) \\ \text { THE } \end{gathered}$
$\begin{gathered} (x+15)(x-15) \\ \text { SQU } \end{gathered}$	$\begin{gathered} (9 x-11)(9 x+11) \\ \text { ROB } \end{gathered}$	$\begin{gathered} (x+9)(x-9) \\ \text { ARE } \end{gathered}$	$\begin{gathered} (3 x+2)(3 x-2) \\ \text { ROO } \end{gathered}$	$\begin{gathered} (7 x-4)(7 x+4) \\ \text { LEM } \end{gathered}$	$\begin{gathered} (x+9)(x-9) \\ \text { TS. } \end{gathered}$

15. The factored form of the difference of the two squares is

Aim Recognize Parent Functions by looking at graphs or equations of trans formations (a.k.a. "think backwards".)
\square

Function Familiarity
recognition te

I give you the function, you sketch
on scratch paper is fine

back side of Warm Up
1 Identify the parent function shown on the graph
2. Find the locator point of the graph shown.
3. Write the function that matches the trans formation shown.

$$
\begin{aligned}
& \text { Cubic } \\
& y=x^{3} \\
& y=a(x-h)^{3}+k
\end{aligned}
$$

The locator point (h, k) is at the inflection point.

	Hyperbola $\begin{aligned} & y=\frac{1}{x} \\ & y=\frac{a}{x-h}+k \end{aligned}$ The locator point (h, k) is in between the two branches.

$y=-3 x-6$

$$
y=(x+2)^{3}+3
$$

$$
\begin{aligned}
& y=(x+3)^{2}-6 \\
& \text { h. } \\
& y=(x+3)^{3}-2 \\
& i .
\end{aligned}
$$

\square

