 the

Questions on
Homework

The quiz on sequences (and exponential functions) will be toward the end of this period.
(1) Why does $y=(x-3)(x-3)$ only touch the $x-$ axis at $x=3$
and no where else?
because 3
is the only

value that will
make $y=0$
(2) Where will $y=(x-8)(x-8)$ touch the x-axis? $(8,0)$ Where will $y=(x-20)^{2}$ touch the x-axis? $(20,0)$ where will $y=(x+6)^{2}$ touch the x-axis? $(-6,0)$ where will $y=(x-3)(x-1)$ touch the x-axis, $(3,0)(1,0)$
(3) Transform the parapola $y=7 x^{2}$ so it slides (translates) 5 units to the right,

$$
y=7(x-5)^{2}
$$

what about 9 units left $y=7(x+9)^{2}$
(4) In general, to slide any parabola to the right
(5) Transform $y=x^{2}+5 x+4$ units to the
right, $y=(x-8)^{2}+5(x-8)+4$
(Graph both on your GDC to check)

$$
y=(x+1)(x+4)
$$

(a) y-intercept $\underset{x \rightarrow 0}{ }(0,-b)$
(b) x-intercept $\rightarrow 0 \rightarrow y=0$

$$
\begin{array}{ll}
& \\
\begin{array}{l}
a=x^{2}+5 x-6 \\
b=5 \text { Quadratic } \\
c=-6 \text { Formula }
\end{array} & \begin{array}{l}
\text { Factor, then } \\
\text { Use the zero }
\end{array} \\
\text { prodect property }
\end{array}
$$

$$
\begin{aligned}
x= & \frac{-(5) \pm \sqrt{(5)^{2}-4(1)(-6)}}{2(1)} \\
= & \frac{-5 \pm \sqrt{49}}{2}=\frac{-5 \pm 7}{2} \\
& x=\frac{-5+7}{2} \frac{2}{2}=1 \quad \frac{x+\operatorname{tit}}{(1,0)} \\
& x=\frac{-5-7}{2}=\frac{-12}{2}=-6 \quad(-6,0)
\end{aligned}
$$

(C)

$$
q(x)=x^{2}+5 x \quad \frac{y \text {-intercept }}{(0,0)}
$$

x-intercept $(y=0)$

$$
\begin{aligned}
& 0=x^{2}+5 x \\
& 0=x(x+5) \\
& x=0 \quad x \quad x+5=0 \\
& x=-5
\end{aligned}
$$

(d)

$$
\begin{aligned}
& p(x)-q(x) \\
& x^{2}+5 x-6-\left[x^{2}+5 x\right] \\
= & \left.x^{2}+5 x-6-x^{2}-5\right) x \\
& -6 \\
= & -6
\end{aligned}
$$

$$
\text { (19(a) }\left(\frac{1}{81}\right)^{-\frac{1}{4}}=\left(\frac{81}{1}\right)^{\frac{1}{4-}}=\sqrt[4]{ }
$$

(b) $x^{-2} y^{-y}=$
(c) $(2 x)^{-2}\left(16 x^{2} y\right)^{\frac{1}{2}}$
(b) $x^{-2} \cdot y^{-4}$

$$
=\frac{1}{x^{2}} \cdot \frac{1}{y^{4}}
$$

$$
\frac{1}{x^{2} y^{4}}
$$

[9] $(2 x)^{-2}\left(16 x^{2}\right)^{\frac{1}{2}}$
(20) First Week (each buy a popcorn +1 drink)

$$
\begin{aligned}
& 3 p+3 d=22.50 \\
& 2 w^{n d} \\
& 3 d+p+3(8)=37.50 \\
& 3 p \text { each by }+8 \text { teket }+1 \text { popcorn }+3 \text { drinks } \\
& 3 p+8 d=22.50 \rightarrow 3 p+3 d=22.50 \\
& p+-3 d=13.50 \rightarrow-3 p-9 d=-41.50 \\
& 2 p=-6 d=-18 \\
& d=3
\end{aligned}
$$

21 c

$$
\begin{aligned}
(0,5) & (5,0) \\
d= & \sqrt{(0-5)^{2}+(5-0)^{2}} \\
& \sqrt{(-5)^{2}+5^{2}} \\
& \sqrt{50}=\sqrt{25} \sqrt{2}=5 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 p+3 d=22.50 \\
& (a) p+3 d+3(8)=37.5
\end{aligned}
$$

(b)

NOTES
Determine Other Ways to transform Parabolas
(Notes)
Today's AIM

You'll Start with an investigation that will require you to record Transformations
Youill make several trans formations of the parent function $y=x^{2}$

Closure

$$
y=2(x-6)^{2}+3
$$

Without Using a GDC, sketch the following....

$$
\mathbf{y}=\frac{1}{2}(\mathbf{x}+3)^{2}-\mathbf{4}
$$

Quiz
on Sequences $\frac{1}{4}$ Expon. Functions

Assignment

2. 23 to $27,28 \mathrm{a}, 29$
