Pick up the Warm UP

 do 1-4 only

Tomorrow there will be a Quiz on Sequences \& Exponential Functions

11 Last week we learned to create an exponential function in the form $\mathrm{y}=\mathrm{ab}^{\mathrm{x}}$.
using the "Double Substitution Method". Use it now to find the exponential function that passes through the two points $(2,12)$ and $(5,187.5)$

(3) $b^{3}=\frac{187.5}{12}$

$$
a=\frac{12}{(3 \cdot)^{2}}=192 .
$$

$$
V v^{2}=\frac{18}{2} \quad \frac{a b^{5}}{12}=\frac{a b^{3}}{a b^{2} 1}
$$

$$
b^{3}=\frac{187.5}{12}
$$

(2) Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of 4.0%.

$$
\begin{aligned}
y & =a b^{x} \\
y & =4500(1.04)^{x} \\
y & =4500(604)^{8} \\
& \simeq \$ 6158.56
\end{aligned}
$$

(3) Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of 4.0%, compounded once TWICE a year.

For this question, you will need the compound interest formula which you will find on your reference sheet. This formula is needed if interest is being compounded more than once a year.
$F V=4=00\left(1+\frac{.04}{2}\right)^{2.8}$
$\approx \$ 6177.5$

Compound Interest Formula:

$k t$

b
Future Value $=\operatorname{PV}\left(1+\frac{r}{k}{ }^{k t}\right.$
where $\quad P V=$ Present Value $r=$ annual interest (as a decimal)
$t=$ number of years $\$$ is being invested
$k=\#$ times per year interest is compounded
(4) Find the future value of a $\$ 15,000$ investment in an account that earns and annual interest rate of 7.5%, but is compounded 4 times a year (this is called quarterly compounding).

$$
=\$
$$

(6) Solve

$$
(16)^{n}=4^{5 n+1}
$$

HW Lot Tery

QUESTIONS ON MW

$$
\begin{array}{cl}
2 x-3 y=12 \\
2[-9-y]-3 y=12
\end{array} \quad \begin{aligned}
& x+y=-9 \\
& x=-9-y
\end{aligned}
$$

a.

c.

b.

\square
(B-94] b

$$
(-1,5)(3,0,03)
$$

$1.25=a b^{-1} \quad 0.032=a b^{3}$

$$
\begin{aligned}
& 0.032=\frac{1.25}{b^{-1}} b^{3} \\
& .032=1.25 b^{3} b^{1}
\end{aligned}
$$

$\frac{B-94 b}{(b)}(-1,1.25) \quad(3,0.032)$

$$
\begin{array}{ll}
y=a b^{x} & y=a b^{x} \\
1.25=a b^{-1} & 0.032=a b^{3}
\end{array}
$$

(b)

Divide $2^{\text {nd }}$ equation by the first

$$
\begin{aligned}
& \frac{.032}{1.25}=\frac{a b^{3}}{a b^{-1}} \\
& .0256=b^{3} \cdot b^{\prime} \\
& b^{4}=.0256 \\
& \sqrt[4]{ }=0.4
\end{aligned} \quad \begin{array}{r}
a(.4)^{3}=.032 \\
a=\frac{.032}{.43} \\
a=0.5
\end{array} \quad \begin{aligned}
& a=0.5(0.4)^{3}
\end{aligned}
$$

2-6 A negative coefficient

$$
\begin{aligned}
& y=x^{2} \\
& y=-3 x^{2} \\
& y=-0.25 x^{2}
\end{aligned}
$$

Aim How can T Translate (shift) a parabola?

Use your GDC to graph

$$
y=(x-2)(x-2)
$$

Use your GDC to graph

$$
y=(x-2)(x-2)
$$

Now
sketch
it

Use your GDC to graph

$$
y=(x-2)(x-2)
$$

Now
sketch it

sketch $\}$ label the line of symmetry and wrote its equation.

$$
y=(x-2)(x-2)
$$

sketch Y label the line of
it symmetry and wrote its equation.

How do we know for sure that there is only one x-intercept? and that $(2,0)$ is the vertex for sure?
because $x=2$ is the only value that makes $y=(x-2)(x-2)$ calculate to 0

Make 3 identical sketches of $y=(x-2)(x-2)$

(b)
(c)

vertical shrink (vertex does int change)

$$
\begin{aligned}
& y=\frac{1}{8}(x-2)(x-2) \\
& y=0.5(x-2)(x-2)
\end{aligned}
$$

vertical shrink (vertex does in' change)
$y=\frac{1}{8}(x-2)(x-2)$

$$
y=0.5(x-2)(x-2)
$$

(b)

Vertical reflection over the x-axis

$$
y=-(x-2)(x-2)
$$

Backwards

Write an equation of a parabola that has been translated
8 units to the left and vernally shrunk by $\frac{1}{2}$

$$
y=1 / 2(x+8)^{2} \quad y=\frac{1}{2}(x+8)(x+8)
$$

We'll add a few more assignments on the current recording sheet, including a few in Ch. 2, and then turn it in.

2nd half of class tomorrow:

Quiz on

- Sequences
- Writing Exponential Functions
- some exponents to simplify
- Create expon. function given 2 pts through 2 given points
sum $\mathrm{m}^{\text {max }}$ Creating Expon Functions
through 2 given points
Use $f(x)=a b^{x}$ format if horiz asymptote is $y=0$
sum $^{m^{m a v}}$ Creating Expon Functions
through 2 given points
through 2 given points
Use $f(x)=a b^{x}$ format if houris asymptote is $y=0$
If given values are simplest Given values not simple or the asymptote? not $y=0$

Sum $x^{\text {max }}$ (x) Creating Expo Functions
through 2 given points
Use $f(x)=a b^{x}$ format of horme asymptote is $y=0$
If given values are simple or the asymptote not $y=0$ by writing a simple equation

$$
\text { or }-, 4,-, \underline{16} \text { from }
$$

 through 2 given points
Use $f(x)=a b^{x}$ format of houris asymptote is $y=0$

If given values are simple deter ming the multiplier by writing a simple equation

$$
\text { or }-, 4,-, \underline{16} \text { from }
$$

Given values not or the asymptote not $y=0$
Use double substitution method.

Assignment
2-... 16, 17, 18ab, 19-20, 21c

