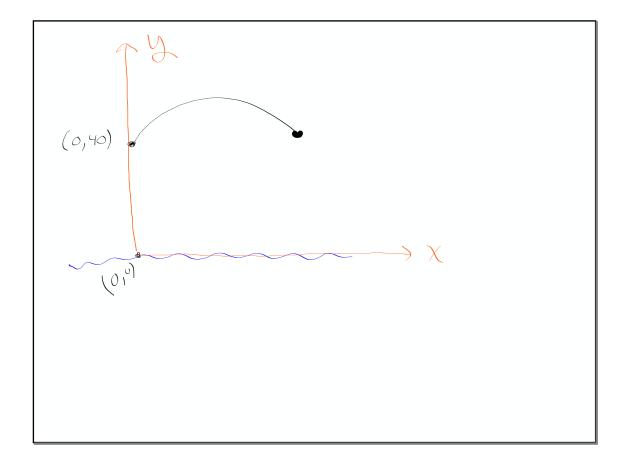
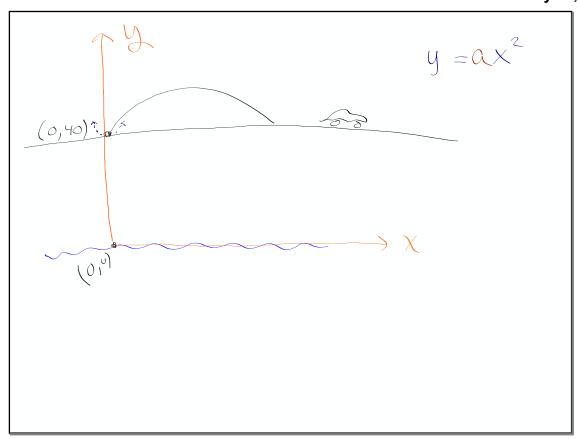
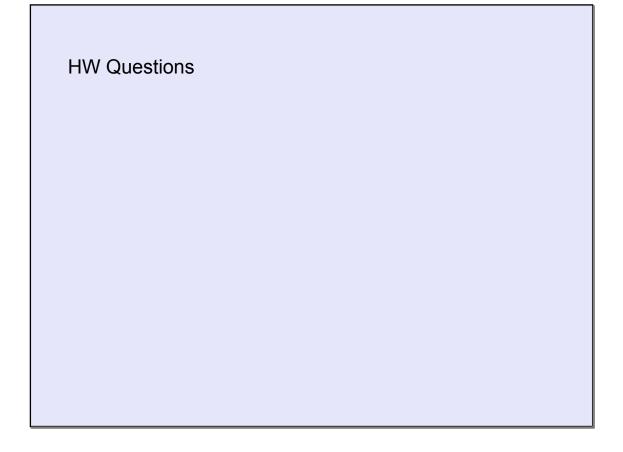
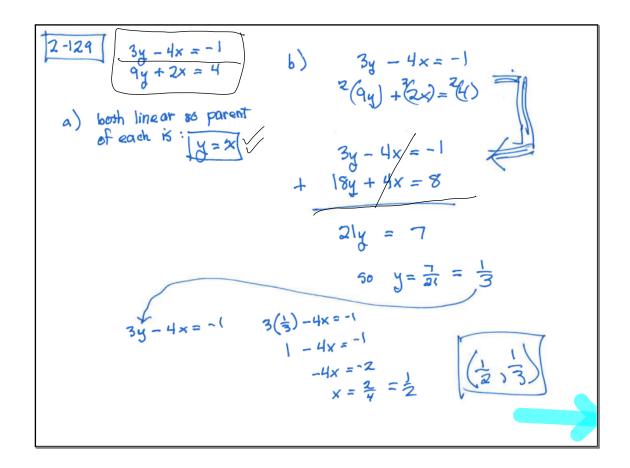

creat mathematical model a Bridge


. A parabolically arched bridge is constructed to span a river that is 50 feet wide. The highest point of the bridge is 30 feet above the road level. Find the equation of a parabola that could model this bridge. The road level of the bridge is 40 feet above the water.




set up your model so that the start of the bridge is at the point (0,40) which is 40 feet above the water

Pick Up the Warm Up


$$\frac{128a}{x-intercept} = 7+2x^2+4x-5$$
y-int (set x=0)
$$x = 2x^2+4x+2$$
Set y=0
$$2x^2+4x+2=0$$

2-127 (2,3) vertex (0,0) so one possibility
$$y = a(x-h)^2 + k$$
 would be $y = (x-2)^2 + 3$ other possibilities $y = 2(x-2)^2 + 3$, $y = -\frac{3}{4}(x-2)^2 + 3$

$$\begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \hspace{0.2cm} \begin{array}{lll} \end{array} \hspace{0.2cm} \begin{array}{lll}$$

a)
$$y = 7 + 2 \times^2 + 4 \times -5$$
 $y = 2 \times^2 + 4 \times + 2$

Content of $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 = 2 \times^2 + 4 \times + 2$
 $0 =$

- a) the two graphs must intersect at $(\frac{1}{2},\frac{1}{3})$
- d) The solution to the system is the point of intersection of the two lines.

$$2-130$$
 a) 10, 2.5, .625, $t(n) = 40(.25)^n$
multiplier is $\frac{2.5}{16} = \frac{1}{4}$ or $t(n) = 10(.25)^{n-1}$

2-131

a)
$$y = |x-4|-2$$
 $y = |x-4|-2$
 $y = |x-4|$

$$y = x^{2} + 7x - 8$$

$$y + 12.75 = (x + 3.5)^{2} - 8$$

$$y + 12.25 = (x + 3.5)^{2} - 8$$

$$y + 12.25 = (x + 3.5)^{2} - 8$$

Parabola, Vertex (3,5) contains (0,6)
$$y = a(x-3)^{2} + 5$$

$$0 = a(0-3)^{2} + 5$$

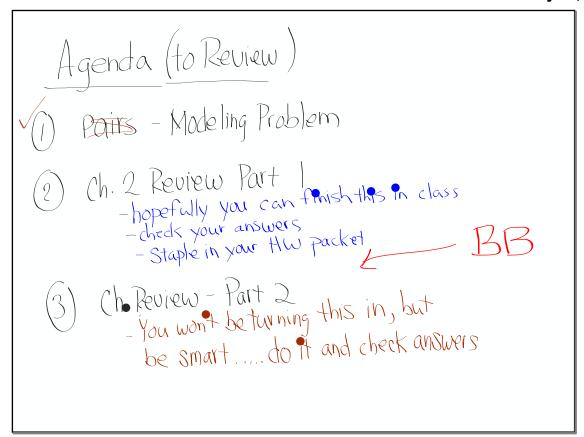
$$0 = a(-3)^{2} + 5$$

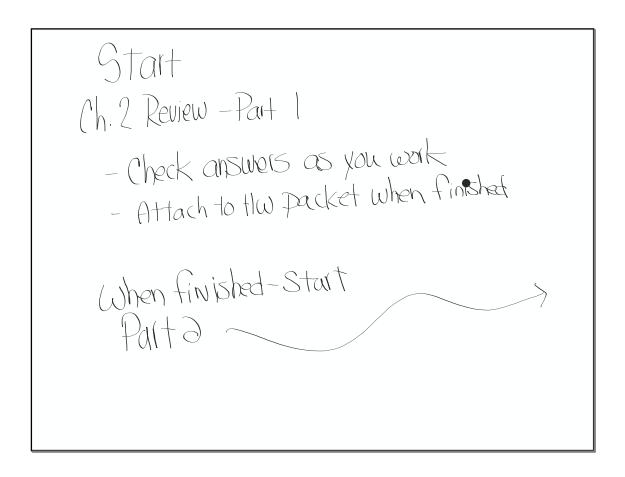
$$0 = 9a + 5$$

$$0 = -\frac{5}{9}$$

$$0 = a(x-h)^{2} + \frac{5}{9}$$

$$y = x^{2} - 5x + 7$$


$$y = x^{2} - 7.5x + 7$$

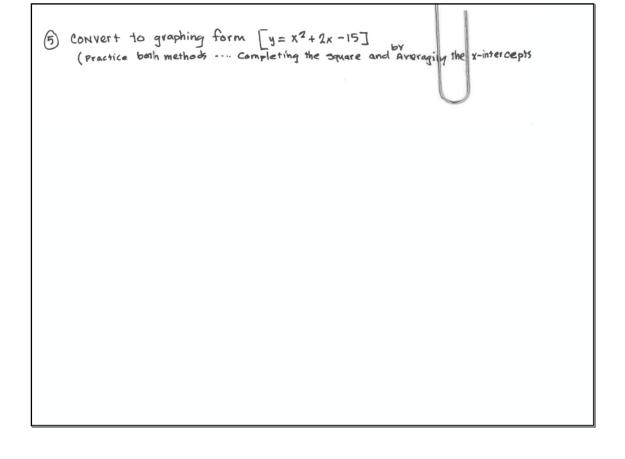

$$y = x^{2} - 7.5x + 7 - 6.75$$

$$y = (x - 2.5)^{2} + 3.75$$

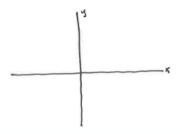
$$y = (x - 2.5)^{2} + 3.75$$

$$y = (x - 2.5)^{2} + 3.75$$
Vertex (2.5, 6.75)

Ch. 2 Review Part 2


2.... 147, 170-171, 174, 175a, 177ab, 178-179, 181

answers (not solutions) are 9n your book for all but 147


I hope to post solutions for the rest

Ch.2 Review - Part I Name	Per
1) Write a transformation equation, T(x), for each situation	
a) $y=\sqrt{x}$ after it has been translated 2 left, 5 down, and compressed vertically by 6.2	
b) $y = 5^{x}$ after it has been translated 16 right, 3 down, and stretched vertically by 4.	
c) $y = \frac{1}{x}$ after it has been translated down 100 and 200 UP.	¥
(2) What is the domain of $y = \frac{1}{x-4}$? range	
3) Factor the quadratic expression 10x2+11x-6	

Triangulum (M33) wants to find the exponential function that passes through the points (2, 75.6) and (6, 97977.6). Assuming that the graph has an asymptote at $y = 0$, what is the equation of the function? Show all of your work!		

6 Sketch $y = \frac{1}{X+4} + 5$. Then specify any asymptotes and their equations. Use "HA" for horizontal and VA for vertical

3 Solve the system of linear equations

$$4x - y = -13$$

 $3x + 2y = 4$