
"Yellow" HW Packet

- include your total
- most recent goes last

Try not to use a Calculator (except for to check your answers)

Shifts to the right 2 units and down 5 units.

$$
\text { Shifts down } 4 \text { units. }
$$

$$
\begin{gathered}
y=(x-2)^{2}-5 \\
y=(x+3)^{2}+1 \\
y=\left(x^{2}-4\right.
\end{gathered}
$$

Shifts right 10.9 units.

$$
y=(x-10.9)^{2}
$$

Stretched vertically by a factor of 2.5 and shifted 9.8 units left and 8 units down.

$$
y=2.5(x+9.8)^{2}-8
$$

Compressed vertically by a factor of 0.4 and shifted 7.3 units to the right.

$$
y=0.4(x-7.3)^{2}
$$

\square

Questions on homework

$$
\begin{aligned}
& \text { 2-50(b) } y=x^{2}-4 x+9 \\
& y=\begin{array}{|l|l|}
\hline x^{2} & -2 x \\
\hline-2 x & \\
\hline
\end{array}
\end{aligned}
$$

(d) $y=x^{2}+7 x-2$

$$
y=\frac{\left.\begin{array}{|l|l|}
\hline x^{2} & \frac{7}{2} x \\
\hline \frac{7}{2} x & \\
\hline
\end{array}\right]}{}
$$

$2-59$ a) figures with ties $\begin{gathered}\text { of symmetry }\end{gathered}$

b) with 2 lines of Sym

c) infinite?

$$
2-60] \quad y=3 x-1 \quad 2 y+5 x=53
$$

2-6) Leadfoot Letice 80 mph lini (55mph
a) how long far 50 miles

$$
d=r t
$$

$$
\begin{aligned}
& 50=80 \cdot t \\
& t=\frac{50}{80}=.625 \text { hours } \\
& \quad 37.5 \mathrm{~min}
\end{aligned}
$$

(b) 50 miles at
speed limit

$$
\begin{gathered}
d=r+\quad 50=65 \cdot t \\
\leqslant \\
.77 \text { hours }
\end{gathered}
$$

$$
46.14 \mathrm{~min}
$$

(c) Speeding ticket $\# 200$

What would be her cost per minute of the time saved by speeding?
.77 hows - .625 hours $=.145$ hours $\approx 8.7 \mathrm{mino}$
So $\frac{\mathbb{W}_{200}}{8.7}$

$$
\approx \frac{\$ 22.99}{\mathrm{~min}}
$$

$2-62$
(a)

$$
\begin{aligned}
& x^{2}=5^{2}+6^{2} \\
& x=\sqrt{25+36} \\
& x=\sqrt{61}
\end{aligned}
$$

(c)

(d)

Soh-Cah-Toa
$2-63$
(a) hoses purchased for ${ }^{\# 120,000}$ annual appreciation $6^{\prime \prime}$
(b) bacteria $180 \quad 22^{0 \bullet}$ per hour

HW lottery

On the road to becoming.....

proficient with transformating parabolas

proficient at writing functions of parabolos in both standard form and graphing form

On the road to becoming.....

proficient with transformating parabolas

proficient at writing functions of parabolos in both standard form and graphing form

Standard form: $y=a x^{2}+b x+c$

Graphing form: $y=a(x-h)^{2}+k \quad \leftarrow \leftarrow \leftarrow$
Factored form: $y=a(x+b)(x+c)$.

Notes

Graphing form of a parabola:

$$
y=a(x-h)^{2}+k
$$

Graphing form of a parabola:

$$
y=a(x-h)^{2}+k
$$

Vertical
stretch factor
al stretch $\frac{i}{1}$
, $0<a<1$ stank $\frac{1}{t}$

Graphing form of a parabola:

$\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{\mathbf{2}}+\boldsymbol{k}$
Vertical
stretch factor
as stretch $0<a<1$ stink if $a<0$, reflect over
x-axis

$y=x^{2}$

Graphing form of a parabola:

Graphing form of a parabola:

Two objectives today

Transform a new function $\left(y=x^{3}\right)$

Create a mathematical model in a situation that requires a parabola.

Modeling with Parabolas

\qquad ∞

\square

At the skateboard park, the hot new attraction is the U-Dip, a cement structure embedded into the ground. The cross-sectional view of the U-Dip is a parabola that dips 15 feet below the ground. The width at ground level, its widest part, is 40 feet across. Sketch the cross-sectional view of the U Dip, and find an equation of the parabola that models it.

$y=\frac{3}{80}(x)^{2}-15$

$$
y=\frac{3}{80}(x-20)^{2}
$$

$$
y=\frac{3}{80}(x-20)^{2}-15
$$

Model:

$$
\begin{aligned}
& y=a(x-20)^{2}-15 \\
& 0=a(40-20)^{2}-15 \\
& 0=a \cdot 400-15 \\
& 15=400 a \\
& a=\frac{15}{400}=\frac{3}{80} .0375
\end{aligned}
$$

B.B.

Example of a

$$
y=x^{2}
$$

for a quadratic function

Example or a Make Transformations
Parent Graph

$$
y=a(x-k)^{2}+k
$$

for a quadratic function

Example of a Make Transformations
Parent Graph

$$
y=a(x-h)^{2}+k
$$

$$
\frac{1}{\curvearrowleft} \quad y=-\frac{1}{2}(x+3)^{2}-7
$$

$$
y=x^{2}
$$

for a quadratic function

Example or a Parent Graph

Make Transformations

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

$$
y=-\frac{1}{2}(x+3)^{2}-7
$$

If $y=(x+4)^{2}$
for a quadratic function

Example Graph
MAKe Transformations

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

$$
\text { If } \quad y=(x+4)^{2}
$$

for a quadratic function

$$
\Downarrow \quad y=1.1(x-4)^{2}-5
$$

Next Few Lessons
(2.2)

New Parent \rightarrow Transaction \rightarrow form
GOAL. Transform any function using same techniques
TODAY'S AlA.

$$
\begin{aligned}
& \text { Trans form } \\
& y=x^{3}
\end{aligned}
$$

You'll experiment with
Transforming $y=x^{3}$

QuICK SKetch

Can make one darker

$$
\begin{aligned}
& Y_{1}=\ll \begin{array}{c}
\text { experimental } \\
\text { function }
\end{array} \\
& Y_{2}=x^{3}
\end{aligned}
$$

a) Find and graph an equation that will shift(translate) $y=x^{3}$ 8 units left. (label the equation) next to its graph.

What are the coordinates of the special paint (,)

(b) shift $y=x^{3}$ down 8 units and vertically shrink by a factor of 002

- Graph with a dotted line - label the equation
(c) Find and graph of a transformation that is translated 7 unis right, down 4, and with a negative orientation
(d) Transform $y=x^{3}$ so it flips upside down
(but you dort need to graph it.

See your LCQ from Friday

Assignment

2- $\underset{\bigcap_{\text {graph paper needed for \#70 }}^{69-71}, 72 \mathrm{a}, 73-74,75 \mathrm{a}, 91}{ }$

$$
\begin{aligned}
& \text { Next Test (ch.2) } \\
& \text { Thur, Jan } 30^{\frac{t h}{*}}
\end{aligned}
$$

