Pick Up the small rectangular paper on Quadratic Functions and either tape (or quickly copy) into your nates.

HI Help $>$

$$
\begin{aligned}
& \text { QUADRAIK FUNCTIONS } \\
& \text { FunctionType } \\
& f(x)=a x^{2}+b x+c \quad \begin{array}{c}
\text { sunward } \\
\text { Form }
\end{array} \\
& a x^{2}+b x+c=0 \\
& \text { Quad. form.* } \\
& \text { Factor + op } \\
& f(x)=a(x-d)(x-e) \quad \begin{array}{l}
\text { Factroces } \\
\text { form }
\end{array} \\
& a(x-d)(x-e)=0 \longrightarrow 2 P P \text {. } \\
& 2(x-3)(x+7)=0 \\
& f(x)=(x-h)^{2}+k \quad \begin{array}{l}
\text { Graphing } \\
\text { form }
\end{array} \\
& (x-h)^{2}+k=0 \\
& (x-2)^{2}+7=0
\end{aligned}
$$

showing solutions to quadratic equations

$$
\begin{aligned}
& x=\frac{2}{3} \quad x=-7 \\
& x=\frac{-3 \pm \sqrt{16}}{2}=\frac{-3 \pm 4}{2}<\frac{\frac{-314}{2}}{\frac{-3-4}{2}}=
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{-3 \pm \sqrt{5}}{4} \\
& X=\frac{-3 \pm 2636}{4}
\end{aligned}
$$

$$
x=\frac{-3 \pm \sqrt{5}}{4}=\quad x=\frac{-3+\sqrt{5}}{4} \approx \approx 2
$$

$$
x=\frac{-2 \pm 26}{x}
$$

Advantages and Disadvantages of each
standard form
graphing form

$$
y=a(x-h)^{2}+k
$$

$$
\begin{aligned}
& \text { Example } \\
& y=3 x^{2}+2 x-5
\end{aligned}
$$

where $(h, k)$ is the vertex
factored form

$$
y=a(x+b)(x+c) \quad \text { where }
$$ $(-b, 0)$ and $(-c, 0)$ are the $x$-intercepts

$$
y=2(x-3)(x+7)
$$



Now pick up the Warm Up

Using FACTƠing $+Z 8_{0}^{P}$.

$$
\left.\begin{array}{c}
2 n^{2}-11 n+14=0 \\
()(\quad)=0
\end{array}\right)
$$



Using FACTƠing $+z_{80}^{R_{0} P}$.

$$
\begin{aligned}
& 2 n^{2}-11 n+14=0 \\
& (2 n-7)(n-2)=0 \\
& a \cdot b=0 \\
& 2 n-7 \\
& 2 n-7=0 \quad n-2=0 \\
& 2 n=7 \quad n=2 \\
& n=\frac{7}{2} \\
& n=3.5 \\
& \begin{array}{cc}
-1 n & -28 n \\
-2 n & -14 n \\
-4 n & -7 n
\end{array}
\end{aligned}
$$

$$
y=(x-3)(x-11)
$$

find $x^{\prime}$-int whew $y=0$


$$
\begin{gathered}
0=(x \cdot 3)(x-11) \\
2 p p \quad x-11=0 \\
x-3=0 \quad x=11 \\
x=3 \quad x=1 \\
x=\frac{B+11}{2}=\frac{14}{2}=7
\end{gathered}
$$



$$
\begin{aligned}
& \text { Q.F. } 2 n^{2}-11 n+14=0 \quad a=2 \quad \begin{array}{c}
b=-11 \\
c=14
\end{array} \\
& X=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(2)(14)}}{2(2)} \\
& X=\frac{11 \pm \sqrt{9}}{4} \rightarrow X=\frac{11+3}{4}=\frac{14}{4}=\frac{3.5}{\underline{1}} \\
& X=\frac{11 \pm 3}{4} \rightarrow x=\frac{11-3}{4}=\frac{8}{4}=2
\end{aligned}
$$

Questions
on
HW?
$35 a \quad y^{2}-6 y=0$
Solve
without using
${ }_{0} F_{0}$
$35 b y^{2}-6 y=0 \quad b \quad n^{2}+5 n+7=7$
$35<$
[35d]

$$
2 t^{2}-14 t+3=3 \quad \frac{1}{3} x^{2}+3 x-4=-4
$$

$$
y=0.8(x+2)^{2}+5
$$

$$
\begin{aligned}
& \text { 40< }\left(2 x^{2} \cdot y^{-3}\right)\left(3 x^{-1} \cdot y^{5}\right) \\
& 2 \cdot x^{2} \cdot y^{-3} \cdot 3 \cdot x^{-1} \cdot y^{5} \\
& 6 \cdot x^{2} \cdot x^{-1} \cdot y^{-3} \cdot y^{5}=6 x^{1} y^{2} \\
& =6 x y^{2}
\end{aligned}
$$

36 a?

$$
\begin{array}{cc}
36 c 0=1 x^{2}-14 x+40 & \\
0=(x-4)(x-10) & \begin{array}{c}
\text { Graphing } \\
\text { Form } \\
x-4=0 \quad x-10=0 \\
x=4 \quad x=10 \\
\operatorname{avg}=\frac{4+10}{2}=7
\end{array} \\
(7,-9) & y=(x-7)^{2}+9 \\
f(7)
\end{array}
$$

39 Make predictions about how many places each will touch the $x$-axis.
(a) $y=(x-2)(x-3)$
(b) $y=(x+1)^{2}$
(c) $y=x^{2}+6 x+9$
(d) $y=x^{2}+7 x+10$
(e) $y=x^{2}+6 x+8$
(f) $y=-x^{2}-4 x-4$
(1)


$$
y=(x+2)^{2}+7
$$

Sketch and label the
 vertex

How can we convert?

$$
y=x^{2}-4 x+11
$$

standard form

$$
y=(x-2)^{2}+7
$$

graphing form
Two methods - (1) Completing the square (2) Angering the x-intercepts

## Completing the Square

 to convert from Standard to Graphing Form
## $y=x^{2}-4 x+11$

$$
\begin{aligned}
& y=(x-2)(x-2)+7 \\
& \quad y \\
& y=(x-2)^{2}+7
\end{aligned}
$$



The technique:

$$
\begin{aligned}
& y= x^{2}+\mathbf{6} \boldsymbol{x}-\mathbf{5} \\
& y+9= x^{2} 3 x \\
&-3 x 9 \\
& y+9=(x+3)(x+3)-5 \\
&(x+3)^{2} \\
& y=(x+3)^{2}-14
\end{aligned}
$$

Vertex


Convert, find vertex, then sketch $f(x)$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+9 \\
& f(x)+4 \left.=x+\frac{x}{-2}+\frac{x}{x^{2}}-\frac{2 x}{-2 x} \right\rvert\, 4 \\
& \hline
\end{aligned}+9
$$



$$
f(x)=(x-2)^{2}+5
$$


y-intercept axis of symmetry?
now go to the Classwork on the back of the Warm Up

Convert $y=x^{2}-2 x-15$ to
Graphing Form using both methods.

$$
\begin{aligned}
& y=x^{2}-2 x-15 \\
& \text { completing the square }
\end{aligned}
$$

Challenge

$$
y=x^{2}+8 x+10
$$

Convert to graphing form without the box


$$
\begin{aligned}
& 0=x^{2}+8 x+10 \\
& a=1 \\
& b=8 \\
& c=10
\end{aligned} \quad X=\frac{-() \pm}{2( }
$$

$$
\begin{align*}
& f(x)=x^{2}+8 x+10 \\
& a=1 \\
& b=8 \quad x=\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(10)}}{2(1)} \\
& c=10 \tag{1}
\end{align*}
$$

$$
\frac{-8 \pm \sqrt{24}}{2}=
$$

$$
\begin{array}{r}
x=-4 \pm \sqrt{6} \\
y=(x+4)^{2}-6 \\
\frac{(-4+\sqrt{6}+-4-16}{2}=\frac{-8}{2}=-4
\end{array}
$$

then by Completing the Square

$$
f(x)=x^{2}+8 x+10
$$

## Assignment <br> 2-..... 50ac, 52, 53a, 54, 55bc, 56a

Will be the last assignment to add to the Yellow recording sheet.... which will be turned in on Monday with its corresponding assignments.

