-Today Solve System of Exponential Equations using Double Substitution

Short day today so..... the warm up is short!
determine an explicit formula

for the following sequence and then use it to find the $1000^{\text {th }}$ term
$-198,-188,-178,-168$

Reminder: The Quiz on the "Appendix" items will be next Tuesday, not tomorrow.

$$
\text { Tomorrow, we start Ch. } 2
$$

```
determine an explicit formula for the following sequence and then use it to find the \(1000^{\text {th }}\) term
\[
-198,-188,-178,-168, \ldots \ldots
\]
\[
t_{n}=
\]
\[
t_{100}=
\]
```

determine an explicit formula
for the following sequence and then use it to find the $1000^{\text {th }}$ term arithmetic $-198,-188,-178,-168, \ldots$ with common of $d=10$

$$
\begin{aligned}
& t_{n}=-198+10(n-1) \quad \text { or } t_{n}=-208+10 n \\
& t_{100}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { determine an explicit formula } \\
& \text { for the following sequence and then use it } \\
& \text { to find the } 1000^{\text {th }} \text { term } \\
& -198,-188,-178,-168, \ldots \text { arithmetic } \\
& \text { with common } \\
& \text { difference } \\
& \text { of } d=10
\end{aligned} \quad \begin{array}{r}
t_{n}=-198+10(n-1) \quad \text { or } t_{n}=-208+10 n \\
t_{100}=-198+10(1000-1)=9792 \sim
\end{array}
$$

HW Help?
short day - so just a few
A. 100
a) 3^{\bullet} increase
b) 25° decrease
c) $13^{\prime \prime}$ decrease
d) 2.088° increase

$$
\begin{aligned}
\text { A] } \\
121 b
\end{aligned} \begin{aligned}
& \left.4 x+5 y=11 \leadsto \begin{array}{l}
4 x+6 y \\
2 x+5 y
\end{array}\right)=11 \\
& -7 y
\end{aligned} \begin{aligned}
4 x+2 y & -21 \\
-7 y & =-21
\end{aligned}
$$

$A-123 c$	$\frac{2(3 x)^{2}}{3 x^{3}}$

23 d

$$
\frac{2(3 x)^{2}}{(3 x)^{-2}}
$$

a)

-1	3
0	
1	75
2	
3	

b)

B-48
a) $(x-3)^{2}$
b) $(2 m+1)^{2}$
c) $x(x-3)(x+1)$
d) $(2 y-1)\left(y^{2}+7\right)$
[B-61 Grandparents $\rightarrow{ }^{*} 500$
in an account growing at
a) function
b) after $16^{\text {th }}$ birthday
c) domain:
range

You created exponential functions $\left(y=a b^{x}\right)$

the method only works if $y=0$ is the
the values were so friendly We could pretend they were part of a sequence

What if values are not so friendly?

or $y=0$ is not the HA?

Example 1 Solve using the double substitution Method
Find the equation of an exponential function (with an asymptote at $y=0$) that passes through the points $(2,16)$ and $(6,256)$.

$256=\left(16 / b^{2}\right) b^{6}$

How did we know it was growth or decay situation

Find the equation of an exponential function (with an asymptote at $y=0$) that passes through the points $(2,16)$ and $(6,256)$.

$(2,16)$ and $(6,256)$

 $y^{2}=a b^{x}$

$16=a b^{2}$
$256=a b^{6}$
Did anyone start by
Solving for the other " a "?

$$
\begin{aligned}
& (2,16) \text { and }(6,256) \\
& y^{\prime}=a b^{x} \quad y^{x}=a b^{x} \\
& 16=a b^{2} \\
& 256=a b^{b} \\
& a=\frac{256}{b^{6}} \\
& 16=\left(\frac{256}{26}\right) b^{4} b^{4} \\
& \frac{16}{16}=\frac{256}{6^{4}}
\end{aligned}
$$

We need an example where the numbers are not so friendly and will require you to be a bit more careful when to use your calculator
\square

$$
y=524.288(0.625)^{x}
$$

$$
\begin{array}{ll}
(3,26,568)_{a n d} & (5,956448) \\
y=a b^{x} & y=a b^{x} \\
a b^{3}=26568 & a b^{5}=956448
\end{array}
$$

HOT POTATO

- Each group gets one paper and one pencil
- One person starts with both.
- All other members can speak but cannot use their hands.
- You will be prompted when to rotate.
- When you finish, write your answer below your work and circle it. Then show Mr. C.
- If incorrect, find your mistake and continue as before.

Use double
substit
$(3,26568)$ and $(6,956448)$

$$
\begin{aligned}
& y=a b^{x} \\
& \text { form }
\end{aligned}
$$

$$
y=123(6)^{x}
$$

\square
through 2 given points
summa ${ }^{\text {mat }}$ Creating Expon Functions
through 2 given points
Use $f(x)=a b^{x}$ format if houris asymptote is $y=0$

through 2 given points
Use $f(x)=a b^{x}$ format of horiz asymptote is $y=0$
If given values are simple Given values not simple or the asymptote ? not $y=0$
summa ${ }^{\text {max }}$ Creating Expos Functions
through 2 given points
Use $f(x)=a b^{x}$ format if houris asymptote is $y=0$
If given values are simple or the asymptote not $y=0$ by writing a simple equation

$$
\text { or }-, 4,-, 16
$$ through 2 given points

Use $f(x)=a b^{x}$ format of hor asymptote is $y=0$

If given values are simple determine the multiplier by writing a simple equation

Given values not simple or the asymptote not $y=0$
Use double substitution method.

Shortcut?

$$
a b^{3}=26568 \quad a b^{5}=956448
$$

Assignment

Appendix $B \ldots . .53 \mathrm{ab}, 71,89,94 \mathrm{a}, 97$
(Use method from class today)

Next Tuesday, the last half of the period, there will be a quiz on the Appendix Topics

Sequences (both explicit and recursive formulas), exponential functions, exponents

