1.

$(14,10)$ and $(-7,1)$
slope

$$
\begin{aligned}
& m=\frac{10-1}{14--7} \\
& m=\frac{10-1}{14-7} \\
& m=\frac{9}{21}=\frac{3}{7}
\end{aligned}
$$

(2)

$$
\begin{array}{lr}
y=m x+b & (14,10) \text { and }(-7,1) \\
y=\frac{3}{7} x+b & \\
10=\frac{3}{7}(4)+b & y=3 / 7(14)+b \\
10=6+b & y-6
\end{array}
$$

$$
\begin{aligned}
& 3(8,-1) \text { and }(2,7) \\
& m=\frac{-1-7}{8-2} \\
& m=\frac{-8}{6} \\
& \text { (3) } 7=-\frac{8}{3}+3 b \\
& 21=-8+3 b \\
& m=-\frac{4}{3} \\
& 29=3 b \\
& b=\frac{29}{3} \\
& y=-\frac{4}{3} x+\frac{2 x}{3}
\end{aligned}
$$

I $\left(-2 x^{2} y^{3}\right)^{2}$ $L$$\left(-3 x^{3} y^{2}\right)^{2}$	
M	N
$\left(-2 x^{3} y\right)^{3}$	$\left(7 x^{2} y^{5}\right)^{2}$
$(-2)^{3}\left(x^{3}\right)^{3} y^{3}$	
$\left(1 x^{4} y^{3}\right)^{3}$	U
θ	$\left(10^{5}\right)^{4}$

HW Questions?
let's go over \#86

(6) y-int $(0) \quad y=,\sqrt{x}-2$ $\left.\frac{x-i n t}{(}, 0\right)$
(7) Asympt ofon
(8) Symmetrye

84 find intersection between

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}-3 x+4}{} \text { and } g(x)=x^{2}+5 x-3 \\
& 2 x^{2}-3 x+4=x_{-x^{2}}+5 x-3 \\
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& 0 \quad b=0 \\
& x-7=0 \quad x-1=0 \\
& x=7
\end{aligned}
$$

$$
y=3 x-6
$$

b]

$$
y=2 x^{2}+4
$$

91

$$
\begin{aligned}
& \text { A) } \begin{aligned}
& y=m x+b \\
&-b \\
&-b
\end{aligned} \\
& y-b=m x \\
& x=\frac{y-b}{m} \\
& O r \\
& x=\frac{y}{m}-\frac{b}{n}
\end{aligned}
$$

B)

$$
A=\pi r^{2}
$$

c) $\quad V=\frac{L}{T} H$

d) $2 x+\frac{1}{y}=3$
$93 \quad y=3 x+15 \quad y=3-3 x$

c) Write an equation that does not contain y and solve it for x.

$$
\begin{aligned}
3 x+15 & =3-3 x \\
& (-2)
\end{aligned}
$$

d) Use the x-value you found to find the corresponding y-value
$95 \quad h(x)=x^{2}-5$
find x-intercepts

97 MATCHING
a. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \curvearrowright$

1. Law of Cosines
b. $\frac{\sin A}{a}=\frac{\sin B}{b}$
c. $c^{2}=a^{2}+b^{2}$
d. $c^{2}=a^{2}+b^{2}-2 a b \cos C$
2. Law of Sines
3. Pythagorean Theorem
4. Quadratic Formula

Learning is always
easier if one can initially make a connection to what you already know

\square

first

Parameters give the function it's shape.

$$
y=m_{\uparrow} x+b_{\uparrow}^{b} \quad y=\frac{1}{x-h} \quad y=\underset{\tau}{a} x^{2}+\underset{\tau}{b} x+\underset{\tau}{c}
$$

in the family

$$
\begin{aligned}
& y=m x+b \quad y=3 x+2 \\
& x \text { and } y ? \quad m \text { and } b \\
& \text { in puls outputs } \quad y \quad \text { constants }
\end{aligned}
$$

What effect does m have? b ?

$$
\begin{aligned}
& 2 y+5 x=? \quad \text { linear } \\
& y=m x+b \\
& -5 x \\
& \frac{f y}{8}=-\frac{5 x}{2}+\frac{7}{2} \quad y=-10+\frac{3}{2} x \\
& y=-\frac{5}{2} x+\frac{7}{2} \text { xes linear because } \\
& \text { it is in the form } y=m x+b
\end{aligned}
$$

x	y
7	52
8	56
9	60
10	64

Yes for every
increase of $1 x$-value the y-value increases by 4

x	y
6	100
9	300
12	600
15	900

No.
As x increases by 3
y doesn't have a constant change

Activity to determine if a situation is linear

1. Decide if it is linear or not.
2. If linear, what is it's equation.

Groups to present their findings

- can show something on the doc cam to assist
- or write on the smart board.
a.

Pieces of Bread	Grams of Fiber
<0	0
<1	5
<2	10
<3	15
4	20

b.

Killer Fried Chickens charges $\$ 7.00$ for a basic bucket of chicken and $\$ 0.50$ for each additional piece. The input is the number of extra pieces of chicken ordered, and the output is the total cost of the order.

$$
\begin{aligned}
& \begin{array}{c|c}
\text { c. } & \begin{array}{c}
x \\
10 \\
5
\end{array} \\
\hline-2< & 0 \\
3 & 5 \\
2 & 7 \\
1 & 8 \\
0 & 10
\end{array} \\
& \frac{5}{-5}=-1 \\
& y=-x+10
\end{aligned}
$$

d.

x	y
10	1
5	2
4	2.5
2	5
1	10
0.5	20

e. | James planted a bush in |
| :--- |
| his yard. The year he |
| planted it, the bush |
| produced 17 flowers. |
| Each year, the branches |
| of the bush split, so the |
| number of flowers |
| doubles. The input is the |
| year after planting, and |
| the output is the number |
| of flowers. |

Decide if the relationship is linear.
d

$L C Q$
On this particular LCQ: $\frac{\text { If you were absent }}{\text { Friday, you wait }}$ to take this tomorrow as long as you come in before school or after school.

Assignment
1104 to 110 and finish the back of today's warm up.

Ch. 1 Test tins Thursday

