1. Start today by checking the solutions to your HW using the solutions

If questions still linger, use the HW Tally
2. Then, Pick up the Warm Up

1-66. Graph the following functions and find the x - and y-intercepts.

$$
\begin{aligned}
& \text { a. } y=2 x+3 \\
& \text { b. } f(x)=2 x+3
\end{aligned}
$$

c. How are the functions in (a) and (b) the same? How are they different? same function and graph. JUST different notation.

a	$f(2.5)=$

Warm Up
 1.2.1.Day 2

Multiply the following polynomial factors:
aptunnial times a binomial
$x(x-7) \quad x^{2}-7 x$
monontial times a binomial
$2 y^{2}(5 y+4)$
$10 y^{3}+8 y^{2}$

(5) One has to be careful when factoring quadratic trinomials into two binomials when there is a common factor. In fact, the box method doesn't quite work the same if you do not factor out the greatest common factor first.

$$
\text { Factor: } \begin{aligned}
& 12 x^{2}+22 x+6 \\
& 2\left(6 x^{2}+11 x+3\right) \\
= & 2(x) x)
\end{aligned}
$$

(5) One has to be careful when factoring quadratic trinomial into two binomials when there is a common factor. In fact, the box method doesn't quite work the same if you do not factor out the greatest common factor first.

$$
\text { Factor: } \begin{aligned}
& 12 x^{2}+22 x+6 \\
& 2\left(6 x^{2}+11 x+3\right) \\
= & 2(x)
\end{aligned}
$$

(5) One has to be careful when factoring quadratic trinomials into two binomials when there is a common factor. In fact, the box method doesn't quite work the same if you do not factor out the greatest common factor first.

Factor: $12 x^{2}+22 x+6$
$2\left(6 x^{2}+11 x+3\right)$

- $=2(2 x+3)(3 x+1)$
$2 x+3=0$

$$
\text { (5) } \begin{aligned}
& 3 x^{2}-2 x-5=0 \quad a=3 \quad b=-2 \quad c=-5 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-5)}}{2(3)}=\frac{2 \pm \sqrt{64}}{6}=\frac{2 \pm 8}{6} \\
& \therefore x=\frac{2+8}{6} \text { and } x=\frac{2-8}{6} \\
&=\frac{10}{6} \\
&=\frac{5}{3}=\frac{-6}{6} \\
&=-1
\end{aligned}
$$

Started Yesterday: The Box

To create a function that models a geometric situation.

What should the height of the finished box be in order to maximize the volume ????

Cut Out Length (cm)	
\times	Volume $\left(\mathrm{cm}^{3}\right)$
0	0
1	280
2	432
3	480
4	448
5	360
6	240
7	112
8	0

So what would the graph of the

Volume of the box vs Cut out size
look like?

therefore, the largest possible height is 8 .n

Next step:

Next to your table, set up a graph and plot the points

here is what part of the graph of the volume function actually looks like.

With your partner or group, caculate an expression for the VOLUME.

$$
\begin{aligned}
& x \frac{1}{22-2 x} \\
& V=x(\partial 2-2 x)(16-2 x) \quad V=x \sqrt{(\partial 2-2 x)}(16-2 x) \\
& =x\left[4 x^{2}-7 x+352\right]=\left(22 x-2 x^{2}\right)(16-2 x) \\
& =4 x^{3}-76 x^{2}+352 x=352 x-44 x^{2}+32 x^{2}+4 x^{3} \\
& =4 x^{3}-76 x^{2}+352 x
\end{aligned}
$$

Graph using the GDC

max volume is $480.1 \mathrm{~cm}^{3}$ When cut out size 3.05 cm

We learn from mistakes.
So, mistakes on homework and small So, mistakes on a bad thing as long as.
In a moment, I'll give each group a
copy of the solutions.
No cell phones out
If you have not taken it, let me know Now.

For the next 10 minutes
Pre-learning Check for Ch 2

- Ineed to see what you know, if anything, about a few upcoming items in Ch. 2
No calculator
Won't count against your grade, bateo if you at least try you get a froe $10 / \mathrm{p}^{\mathrm{tw}}$

Assignment:
$1 . .67,70-72,74 b, 75-76$

The First Test will be:
Thursday, December. 19

