Pull out your ACg/Geometry Reference Sheet
(2) Then pick up the Warm Up
\square
missed an LCQ?
(1) Fill in the boxes

$$
\begin{aligned}
& 1^{2}=\square \quad 2^{2}=\square \quad 3^{2}=\square \quad 4^{2}=\square \\
& 5^{2}=\square \quad 6^{2}=\square \quad 7^{2}=\square \quad 8^{2}=\square \\
& 9^{2}=\square \quad 10^{2}=\square \\
& 13^{2}=\square \quad 14^{2}=\square
\end{aligned}
$$

(2) All the numbers inside the boxes above are examples of numbers called \qquad
\qquad
(1) Fill in the boxes

$$
\begin{aligned}
& 1^{2}=\square \quad 2^{2}=\square \quad 3^{2}=\square \quad 4^{2}=\square \infty \\
& 5^{2}=\sum 56^{2}=B 67^{2}=488^{2}=64 \\
& 9^{2}=8 \quad 10^{2}=10011^{2}=12 x 12^{2}=1214 \\
& 13^{2}=16814^{2}=19615^{2}=225
\end{aligned}
$$

(2) All the numbers inside the boxes above are examples of numbers called Perfect Squares
(3) Certain types of quadratic expressions can be factored using a shortcut. Look at the first few examples. Then complete the rest,

$$
\begin{aligned}
& n^{2}-9=(n+3)(n-3) \\
& x^{2}-64=(x+8)(x-8) \\
& t^{2}-100=(t+10)(t-10) \\
& z^{2}-4=(z+2)(-2) \\
& n^{2}-25=(n+5)(n-5) \quad a^{2}-b^{2}=(\quad x \\
& m^{2}-144=(m+12)(m-12) \\
& p^{2}-1=(p+1)(p-1) \\
& x^{2}-225=(x+15)(x-15)
\end{aligned}
$$

(4) The short cut factoring method you just practiced is called "factoring using
"Difference of squares"
aka. DOS
(5) Using this shortcut solve the quadratic equation: $n^{2}-36=0$

$$
\begin{gathered}
(n+6)(n-6)=0 \\
2 p p \\
n+6=0 \quad n-6=0 \\
n=-6 \quad n=6
\end{gathered}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \text { leg} 2+\operatorname{leg}^{2}=\text { hypotenuse } 2 \\
& \text { (6) Right Triangle! } \\
& c^{2}=8^{2}+11^{2} \\
& C^{2}=185 \\
& C=\sqrt{185} \\
& c \approx 13.6 \\
& \text { (7) } \\
& \text { find this side } n \\
& 100^{\circ}+n^{2}=120^{2} \\
& \sqrt{n^{2}}=\sqrt{120^{2}-100^{2}} \\
& n=\sqrt{4400} \\
& \simeq 66.3
\end{aligned}
$$

Questions on HW

47

$$
f(x)=\frac{1}{x}
$$

(a) $f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=$
(b) $f\left(\frac{1}{10}\right)=$
(c) $f(.01)=\frac{1}{.01}=$
(d) $f(.007)=\frac{1}{.007}=$

$48 b \quad 2 x^{2}-5 x-6=0 \quad a=2 \quad b=-5 \quad c=-6$
can't be factored

$$
\begin{array}{cc}
-1_{x} & 12 x \\
1 x & -17 x
\end{array}
$$

$$
\sum_{-5 x}^{-12 x^{2}} \begin{array}{cc}
-2 x & \begin{array}{c}
6 x \\
2 x
\end{array} \\
-6 x \\
-3 x & 4 x \\
3 x & -4 x
\end{array}
$$

cant be factroed
$48 b \quad 2 x^{2}-5 x-6=0 \quad a=2 \quad b=-5 \quad c=-6$ can't be factored

$$
\begin{aligned}
x=\frac{-(5) \pm \sqrt{(5)^{2}-4(2)(6)}}{2(2)}= & \frac{5 \pm \sqrt{73}}{4} \\
& x=\frac{(5+\sqrt{73})}{4} \approx 3.39 \\
& x=\frac{5-\sqrt{73}}{4}
\end{aligned}
$$

$49 \quad(-5,0)(0,3)$	
$\left.\begin{array}{ll}d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { slope } \\ \sqrt{(-5-0)^{2}+(0-3)^{2}} & M\end{array}\right)=\frac{0-3}{-5-0}$	
	$=\frac{-3}{-5}$
$\sqrt{25+9}$	$=\sqrt{34}$
	$=\frac{3}{5}$

$$
3.9 x-2.1=11.2 x+51.7
$$

$52 b \frac{1}{5} x-2=\frac{13}{25}-0.7 x$

Random HW Check

Turn in the assignment that was due today. Be sure your name is on it.

I'll give it back tomorrow or the next day so you can include it with your HW packet due on test day.

Agenda: Revisit Trigonometry from Geometry

- Pythagorean theorem
- Sol Can To

All les Law of Sines
tran Law of soses prang Law of cosines
\square

What is the main difference?

Could use Pythag. Theorem

Cant
but the ratios of sides is all 33° right triangles are the same!

From Geometry: Triangles that are similar have ratios of sides that are identical.

For example, all right triangles in the world that have a 33 degree angle have the same exact ratio of sides.

USE SOH-CAH-TOA to solve for missing

(1)

$$
\begin{gathered}
\sin \left(25^{\circ}\right)=\frac{50}{h} \\
n=\frac{50}{\sin \left(25^{\circ}\right)} \\
n \approx 118.21
\end{gathered}
$$

(3)

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { calculate } \\
m \angle A
\end{array} \\
250 \text { fan } \tan (\tan (A))=\left(\frac{250}{300}\right)
\end{array} \\
& A=\tan ^{-1}\left(\frac{250}{300}\right) \\
& \begin{array}{r}
29.8 \\
3981^{\circ}
\end{array}
\end{aligned}
$$

Right Triangles vs Non-Right Triangles

$$
c^{2}=a^{2}+b^{2}
$$

So what would happen if we stretched the hypotenuse?

$$
c^{2}=a^{2}+b^{2}
$$

$$
c^{2}=a^{2}+b^{2} \text {-Adjustment }
$$

Law of Cosines

$$
\begin{aligned}
& \text { Law of Cosines } \\
& c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C \\
& T_{\text {side }}
\end{aligned}
$$

Geometry

in right triangles: Can use both the Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ if only dealing with side or Soh-Cah-Toa sine $A=\frac{\text { opposite }}{\text { hypotenuse }}$, cosine $A=\frac{\text { adjacent }}{\text { hypotenuse }}$, tangent $A=\frac{o}{a}$

Any triangle: Law of Sines $\frac{\sin A}{a}=\frac{\sin B}{b}$ where a is the side length opposite angle A, etc. Law of Cosines $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$ where c is the side length opposite ans

sheet

Law of Cosines $\quad c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$ where c is the side length opposite angle C

(4)

$c^{2}=17^{2}+20^{2}-2(17)(20) \cdot \cos \left(115^{\circ}\right)$
$c^{2}=976.38 . .$.
$C=31.25$
(6)

Notice the incoming known in formation is in a SAS format

MORE Later on
this topic

(7)

Prelearning Chock
for Ch. 2

TRIANGLE
show steps as in class

See your
Lea 2

