Extra time is going to be given on the Cumulative Review because of the time "t takes to "loo back". important to start and you want quality when you do it

however

thee B g ing to be orralep with some other things you need to do.
like getting ready for the ch. 7 test on monday and
finishing the PPC's by Tuesday

Tuesday \rightarrow Ch. 7 TEST

$\geqslant H W$

* Rand. HF checks
\equiv Collect HW at end of Ch. or not?

$C h$

Sampling Distributions

General Sampling Distrib questions	Sample proportions
About sampling any statistic not just proportions and means	Means
very much alike which can cause confusion	

(1.2)
sample proportions

$$
\hat{p}
$$

Sampling Distribution of \widehat{p} of all possible samples of size n

$\operatorname{mean} \mu_{\hat{p}}=p^{\lambda}$ prosiciontion
$\sigma^{\text {Gd }}{ }^{\text {Bax }} \sigma_{p}=\sqrt{\frac{p(1-p)}{n}}$
if 10^{\prime} condition is met
$n<0.1 \mathrm{~N}$ or if you are told
in same way the
situation is independent. -

Sampling distribution of \widehat{p} is approx Normal when

$$
n p \geq 10 \text { and } n(1-p) \geq 10
$$

Σ Large Counts

Always check for proportions

$$
>7.3
$$

sample means

$$
\bar{x}
$$

Sampling distribution of \bar{x}

ई
mean $\mu_{\bar{x}}=\mu^{k \text { propman }}$
so \bar{x} is considered an unbiased estimator of μ.

为 $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$
\longrightarrow also if 10% condition are met.
with means:
In two costs we can use a. Normal distribution to calculate probabilities involving the sample mean (\bar{x})
approx.

1. If the pop is Normal, then $s o$ is the sample. distrib. of oms
2. If not Normal but $n \geq 30$, then the sampling distribution of \bar{x} will be approx. Normal.
(CDT)

\square
