1. Warm Up (with sequences)
2. Go over the worksheet quickly
3. Brain Break
4. Work on Closure Problems (will not be part of the HW packet)

mistake on

After Test Assignment 7680.08 786.08

HW Tally....

Pick up the Warm Up

(1) In Algebra 1 of CPM SEQUENCES ARE INTRODUED AS ARE EXPONential FUnctions, IN DETAIL.
(2) Algebra 2 has these topics in an Appendix A, B
(3) Friday and After the break well continue for 3 days

The Warm up is about

Writing Formulas for Geometric Sequences

Classify the sequences as Geometric, Arithmetic, or neither.
common ratio common different

$$
\begin{array}{cc}
r= & d= \\
40,43,46,49,52, \ldots
\end{array}
$$

$$
d=3
$$

$$
-4,12,-36,108,-324, .
$$

$-29,-34,-39,-44,-49$,
1, 4, 9, 16, 25, ...
$1,5,25,125,625, \ldots$

$$
1,5,25,125,625, \ldots
$$

$$
625,125,25,1, \ldots \ldots G r=\frac{1}{5}
$$

a

Months	Rabbits
0	4
1	12
2	36
3	
4	

$$
\begin{gathered}
t_{20} t_{n}= \\
t(20)=4(3)^{20}=1.39 \times 10
\end{gathered}
$$

$$
\text { zero term format } t(n)=4(3)^{n}
$$

$$
\text { first term format } f(n)=12(3)^{n-1}
$$

zero term format $t(n)=$
first term format $t(n)=$

Months	Rabbits
0	6
1	12
2	24
3	48
4	96

What is the growth factor (or multiplier)?

$6 \cdot P \cdot P=24$
 $$
6 p^{2}=24
$$
 $$
\sqrt{p^{2}}=\sqrt{4} \quad p=2
$$

zero term format $t(n)=(2)^{n}$
first term format $t(n)=12(2)^{n-1}$

$$
\text { (c) } \frac{25}{(1)}, \frac{30}{}, \frac{36}{},-\ldots
$$

multiplier :

$$
\frac{625}{36}(1.2)^{n}
$$

zero term format $t(n)=17.36(1.2)^{n}$
first term format $t(n)=20.8(1.2)^{n-1}$

$$
=\frac{125}{6}(1.2)^{n-1}
$$

$$
\begin{aligned}
& \text { Do you } \\
& \text { recognize? }
\end{aligned}
$$

Factor

$$
\begin{aligned}
& x^{2}-36=(x+6)(x-6) \\
& n^{2}-4=(n+2)(n-2) \\
& w^{2}-1=(w-1)(w+1)
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}+22 x+24 \\
& 2\left(2 x^{2}+11 x+12\right) \\
& 2()
\end{aligned}
$$

Graphing Calculator tidbits

- Mode
- Format
- Memory Re-set

$$
\begin{aligned}
& \text { Questions } \\
& \text { on } \\
& \text { HW }
\end{aligned}
$$

A lot of the Ch. 1 test looks like last night's HW, just saying.

B. Factor, completely, the following four expressions (into 2 or more factors):

$5 x^{2}-40$		
$=$	$=$	$5 x^{2}-40 x$

B. Factor, completely, the following four expressions (into 2 or more factors):
$\xrightarrow{N} 5 x^{2}-40$
$5^{\text {is }}$
$5\left(x^{2}-8\right)$
C. Solve the quadratic equation $(3 x-10)(5 x+70)=0$ hopefully the quick way! The other ways will take you until Valentines Day.
Use the Zero Product

$$
\begin{aligned}
3 x-10 & =0 \\
3 x & =10 \\
x & =\frac{10}{3}
\end{aligned}
$$

$$
5 x+76=0
$$

Property

$$
5 x=-70
$$

$x=-14$

$$
\begin{aligned}
& x=\frac{10}{3} \\
& x=-14
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
5 x^{2}-40 x \\
= & 5 x^{2}-45 \\
\\
\text { are commoN }
\end{array}=5 \text { common }=4 x^{2}+22 x+24 \\
& 5 x(x-8)=\frac{5\left(x^{2}-9\right)}{\substack{\text { difference of } \\
\text { equates }}}=\frac{2()()}{2(2 x+3)(x+4)} \\
& =5(x+3)(x-3) \\
& \text { factored }
\end{aligned}
$$

D. Johnny Depp got a pet snake for his birthday. It was only 10 cm long. However, it grew around 2.5 cm per week. Create three representations of a function for which the inputs are the \#weeks since his birthday and the outputs are the length of the snake.

An Equation

$y=2.5 x+10$

A Table

A labeled sketch of a the graph

the most important problem
 on this assignment.

E. In this chapter you were given the 9 Function Investigation Questions to use to analyze functions. You will use them now.

Use the 9 Function Investigation Questions to analyze $f(x)=2 \sqrt{x+2}-6$ (be sure to make a sketch)
A square root function. Curved will
(2) Special point: Endpoint $(-2,-6)$
(3) $y_{\text {min }}=-6$
(7) $\begin{gathered}y \text {-int } f(0)=2 \sqrt{0+2}-6=-4 \\ (0,-4)\end{gathered}$

$$
\underline{x \text {-int } \quad \text { Set } y=0 \quad \begin{aligned}
& 2 \sqrt{x+2}-6=0 \\
& 2 \sqrt{x+2}=6 \\
& \sqrt{x+2}=3 \\
& \text { square } \\
& x+2=9 \\
& x=7
\end{aligned} \quad \begin{aligned}
\\
(7,0)<
\end{aligned}} \begin{aligned}
\end{aligned}
$$

1.

\qquad
2. \qquad $\frac{a^{3}}{a}=$ \qquad
3. $-\frac{8 \mathrm{a}}{2 \mathrm{a}}=$ \qquad
4.

\qquad
5. $-\frac{13 a}{26 a^{2}}=$ \qquad
6. \qquad $\frac{3 a^{2} b}{3 h}=$ \qquad
11. $-\frac{30 \mathrm{a}^{2}}{10 \mathrm{a}^{2}}=$ \qquad
12. $-\frac{-10 \mathrm{a}^{2}}{2 \mathrm{a}^{3}}=$ \qquad
13. $-\frac{-15 \mathrm{a}^{2}}{-15 \mathrm{a}}=$ \qquad
14. $-\frac{(-2 a)^{2}}{a}=$
15. $-\frac{3 a^{3}}{3 a}=$ \qquad
16. $-\frac{(3 \mathrm{~b})^{2}}{15 \mathrm{~b}}=$ \qquad
G. You do not have to solve the equations below.

You should be able to solve all of them, however, for the upcoming Ch. 1 test. If you need practice with some or all, then do them for extra practice. Answers will be provided in class. (you should be able to show your steps clearly as you solve them.)

1. $4 x-5=15$
2. $17=2-5 x$
3. $\frac{x}{3}+1=4$
4. $3-\frac{x}{5}=1$
.
5. $\frac{4}{5} w-2=10$
6. $4-x=2-3 x$
7. $3(x-1)+4=6-2 x$
8. $\frac{3 x+1}{2}=\frac{x-5}{3}$

On Test days you will always turn in all of your HW along with the HW recording sheet.

so that means tomorrow

> Your homework should be stapled to your recording sheet today.

```
later today
```


How To FILL OUT HW Record Sheet

W	$12 / 18$	Che Closure		
	1			
1				

Turn in this sheet with the corresponding assignment on test day, prior to the test. (capped at 80% if turned the next 3 days. Capped at 60% if after 3 days)
***Deductions: \qquad Totals: \qquad .48

LCD 3

See yours
We'll do it together, you learn from the experience

Aim today

Review
Practice
\rightarrow page $48 \ldots$ 119-128
Answers are at the end
\Rightarrow Have your twa Recording sheet filled out and stapled. before you get to class.
\square

