The sheet on your table is an example of what a quality homework assignment might look like. (when working on problems with a process)

After looking this over, return it to the front desk and then 2

Pick up the Warm Up and do both sides

Warm Up
(1) Solve for \boldsymbol{m} (in other words, re-arrange the equation to isolate m)

$$
3(\mathbf{n})=-\frac{3)}{3} m-10(3) \text { or } n+10=\frac{7}{3} m
$$

Clear

$$
3 n=7 m-30
$$ out the

fractions

$$
\begin{aligned}
& \frac{3 n+30}{7}=\frac{x m}{7} \\
& m=\frac{3 n+30}{7}
\end{aligned}
$$

$$
\frac{3 n}{7}+\frac{30}{7}=\frac{x m}{7}
$$

AsAp

$$
\begin{aligned}
& m=\frac{3 n}{7}+\frac{30}{7} \\
& m=\frac{3}{7} n+\frac{30}{7}
\end{aligned}
$$

2
Find the error in the solution at right. Explain what the error is and solve the equation correctly. Be sure to $\begin{array}{rlrl}\frac{5}{x} & =x-4 & & (/ x) \frac{5}{x}=x x-4(x) \\ x \cdot \frac{5}{x} & =x<4 & \\ 5 & =x-4 & 5=x^{2}-4 x \\ x & =9 & -5 & -5\end{array}$ $a=1 \quad b=-4 c=-5$ $X=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-5)}}{2(1)}$

$$
x=\frac{4+\sqrt{36}}{2}=\frac{4 \pm 6}{2}<\begin{aligned}
& \frac{4+6}{2}=5 \\
& \frac{4-6}{2}=-\frac{2}{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& 0=x^{2}-4 x-5 \\
& 0=(x+1)(x-5) \\
& x=-1 \quad x=5
\end{aligned}
$$

$$
y=x^{5}-18
$$

$$
\begin{array}{ll}
\begin{array}{l}
x \text {-intercept } \\
\text { set } y=0
\end{array} & \begin{array}{c}
\frac{y(x)}{y \text {-intercept }} \\
\text { set } x=0 \\
y=(0)-18
\end{array} \\
x^{5}-18=0 & (\sqrt[5]{18}, 0) \\
x^{5}=18 & (1.78,0) \\
\sqrt[5]{5} \sqrt[5]{18} & (0,-18) \\
x=\sqrt[5]{18} &
\end{array}
$$

(4)

Making "ONes"

$$
\begin{array}{ll}
\left\lvert\, \frac{b}{\mid-5}=1\right. & \left\lvert\, \frac{x}{x}=1\right. \\
\left\lvert\, \frac{x \cdot x}{x \cdot x}=1\right. & \left\lvert\, \frac{x^{2}}{\dot{x}^{2}}=1\right.
\end{array} \frac{4 n^{3}}{n^{3}}=41+\frac{4+n^{3}}{m^{3}}
$$

(5) There are seven exponent "laws" two of which can be tricky. $\frac{a^{m}}{a^{n}}=a^{m-n}$ and $(a b)^{m}=a^{m} b^{m}$

$$
\begin{cases}\frac{x^{5} x^{2}}{x^{3}}=x^{2} & \text { or just } \\ \frac{1}{a^{4}}=\frac{1}{a^{2}} \quad \text { or } \\ \frac{4 x^{2} y^{2} t}{5 m x^{4} x^{3}}=\frac{4 y^{2} t}{5 m x^{3}}\end{cases}
$$

$$
\left\{\begin{array} { l c }
{ (5 x ^ { 3 }) ^ { 2 } = 5 ^ { 2 } (x ^ { 3 }) ^ { 2 } = (5 x ^ { 6 } } & { (2 n ^ { 2 } m) ^ { 4 } = 7 6 n ^ { 8 } m ^ { 4 } } \\
{ (- 2 m ^ { 3 }) ^ { 3 } = } & { (n ^ { 2 }) ^ { 4 } }
\end{array} \left(\left(-3 n^{2} e^{3}\right)^{2}=子 \begin{array}{lc}
(-2)^{3}\left(m^{3}\right)^{3} & (-3)^{2} n^{4} e^{6} \\
-8 m^{9} & 9 n^{4} e^{6}
\end{array}\right.\right.
$$

Learning from your LCQ you took on
first a few thoughts

Confusion about

$$
\begin{gathered}
\sqrt{ } \\
\sqrt{x^{2}}=\sqrt{25} \\
x= \pm 5
\end{gathered}
$$

Solutions ins
to e^{20}

$$
\begin{array}{cc}
18=2 x & \begin{array}{c}
\text { Same with } \\
\text { writing } \\
\text { functions }
\end{array} \\
9=x & f(x)=2 x^{2}-3 x+2 \text { ny } y \\
x=9 & y=
\end{array}
$$

$$
3 x-5=0
$$

$$
3 x=5
$$

$$
x=\frac{5}{3}
$$

$$
\frac{5}{2}=
$$

$N 0 T \quad 1.67$
$1 . \overline{6}$

Continue
from
yesterday
more

$$
\begin{aligned}
& \text { Review } \\
& \text { Trig }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \left(40^{\circ}\right)}{29} & =\frac{\sin \left(100^{\circ}\right)}{x} \\
x \cdot \sin \left(40^{\circ}\right) & =29 \cdot \sin (101) \\
x & =\frac{29 \cdot \sin (101)}{\sin (40)} \\
& =44.29
\end{aligned}
$$

(8) find $m \angle E$

$$
\begin{gathered}
\frac{\sin \left(50^{\circ}\right)}{30}=\frac{\sin (E)}{25} \\
\text { cross } m
\end{gathered}
$$

$30 \cdot \sin (\bar{E})=25 \cdot \sin (50)$

$$
\begin{aligned}
& \sin (E)=\frac{25 \cdot \sin (50)}{30} \\
& E=\sin ^{-1}\left(\frac{25 \cdot \sin (50)}{30}\right)=39.7^{\circ}
\end{aligned}
$$

$$
\tan \left(75^{\circ}\right)=\frac{15}{x} \quad S_{\text {sh }} \cos T_{\text {ad }}
$$

\square
BB

Goals for today and tomorrow.

Generate an algebraic relationship of a geometric situation.

(2-day investigation)

Design an open top box, starting from a flat rectangular piece of metal

To maximize the volume, what size squares should be cut out of each corner?

Demo of an

Open Top Box

being constructed

Each pair will be given a paper with dimensions

$$
22 \mathrm{~cm} \times 16 \mathrm{~cm}
$$

Each of you will cut out and make a box, however, everyone will have a different cut out size

$$
1,2,3,4,5,6,7,8
$$

A) Cut, fold, tape your box
B) Which one will gree us the largest volume?

Each person should
now calculate the volume of their own.
Purple $\quad \mid \times 1$
White 2×2
Cream
3×3
Blue
4×4
Dark Brown 5×5
Light Pink 6×6
Dark Pink 7×7

(ut out (cm)	Volume $\left(\mathrm{cm}^{3}\right)$
9	
1	
3	
3	
4	
5	
6	
7	
8	

\square

