https://www.youtube.com/watch?v=uNS1QvDzCVw\&feature=youtu.be \leftarrow

How many wars con you arrange a deck of cards

Delay tracmwill be a bit
tight for t. me.
Let's just say that well be moving
swiftly. This includes going through a long warm up together (and quickly)

A video at the start of class will assist us on the first question.

シ＂H＇小いいい＂ －you arrange a deck －of cards？ rill

Ansuer：52！

$$
\begin{aligned}
& 52 \cdot 51 \cdot 50 \cdot 49000 \cdot 1 \\
& n!=n \cdot(n-1) \cdot(n-2) \cdot \bullet \cdot 1
\end{aligned}
$$

Next question
5 friends are hanging out-
How many ways can you choose 2 people to go get food?

Translation How mary "combinations" of two people can be chosen from 5?

Binomial Coefficient
The number of ways to arrange K successes among n trials

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& \binom{5}{2}=\frac{5!}{2!(3!)}=\frac{5 \cdot 7 \cdot 3 \cdot 2 \cdot 1}{12 \cdot 1 \cdot 32 \cdot 1}=10
\end{aligned}
$$

$$
\binom{7}{3}=
$$

Other notation • $\binom{7}{3}$ or ${ }_{7} C_{3}$

goodness I's multiple choice
bad news: 10 questions
good news - There's only 5 possible answers $A B C D E$
bad news. You don't get to see the questions

Answer all 10 in $1 \frac{1}{2}$ minutes You have the same prob. of success it's simple you're either right or wrong
Now $B=D \quad 3+4,5 A$
Correct
${ }_{6} C \neg E \& A$ - E $10 B$

Record No. of Successes, P

What is the center?

This is an example of a
bino
a
(base on the information provided)

- Each question had two outcomes (correct or not correct).
- The probability of getting an answer correct is 1/5.
- The probability remained 1/5 for each questions (questions are independent).
- There were ten questions. (n was fixed.)

A binomial setting arises when we perform n independent trials of the same chance process and count the number of times that a particular outcome (called a "success") occurs.

The four conditions for a binomial setting are

-Binary? The possible outcomes of each trial can be classified as "success" or "failure."
-Independent? Trials must be independent. That is, knowing the outcome of one trial must not tell us anything about the outcome of any other trial.
-Number? The number of trials n of the chance process must be fixed in advance.
-Same probability? There is the same probability of success p on each trial.

The four conditions for a binomial setting are

-Binary? The possible outcomes of each trial can be classified as "success" or "failure."
Mdependent? Trials must be independent. That is, knowing the outcome of one trial must not tell us anything about the outcome of any other trial.

Nymber? The number of trials n of the chance process must be fixed in advance.
-Same probability? There is the same probability of success p on each trial.

1
N

S

The four conditions for a binomial setting are

- Binary? The possible outcomes of each trial can be classified as "success" or "failure."

Ad dependent? Trials must be independent. That is, knowing the outcome of one trial must not tell us anything about the outcome of any other trial.

Number? The number of trials n of the chance process must be fixed in advance.

Same probability? There is the same probability of success p on each trial.

Well try "one trial doesnit affect another" to avoid.
why we dort want to think that the independence condition is violated only When there is a cause and effect condition.

Instead: Knowing the outcome of one trial tells us nothing about the outcome of another.
"Success" does not always mean something awesome happened

Success could be defined as a faulty part a person being diabetic

The term trials can be used interchangeably with the term observations.

Dice, cars, hoops example

Dice, cars, and hoops

Determine whether the random variables below have a binomial distribution. Justify your answer.
(a) Roll a fair die 10 times and let $X=$ the number of 6 s .

B

I
N
S

Dice, cars, and hoops

Determine whether the random variables below have a binomial distribution. Justify your answer.
(a) Roll a fair die 10 times and let $X=$ the number of 6 s .
$\boldsymbol{B}^{\text {yes }}$ success $=6$, failure $=$ not a 6
I Yes, knowing outcome of past rolls tells you nothing
about future rolls
\mathbf{N} - Yes. \#trials fixed at $n=10$
S
\backslash Yes pis alway $\frac{1}{6}$
This is a binomial setting. The number of $6 \mathrm{~s}, X$, is a binomial random variable with $n=10$ and $p=1 / 6$.
(b) Shoot a basketball 20 times from various distances o the court. Let $Y=$ number of shots made.

B

I

N

S
(b) Shoot a basketball 20 times from various distances o the court. Let $Y=$ number of shots made.
B Yes success= makes shot failure= miss
I Yes it is reasonable to assume that knowing the outcome
\boldsymbol{N} Yes $n=20$ ticals
s No the prob. of success changes because
the shots are taken from various distances 30 e
T So this is not a binomial random variably
(c) Observe the next 100 cars that go by and let $C=$ color of each car.
(c) Observe the next 100 cars that go by and let $C=$ color of each car.
: NO. there are more than two colors.
I
N
s success has not been defined so we cannot determine if P is same
\square
Free response questions about the binomial distribution are one of lowest scoring questions on average. Why?
Test takers do not recognize that a binomial setting is present.

CALCULATE and INTERPRET probabilities involving binomial distributions.

Lesson 6.3: Day 1B: Is it smart to foul at the end of the game?

In the 2005 Conference USA men's basketball tournament, Memphis trailed Lovisville by two points. At the buzzer, Memphis's Darius Washington attempted a 3-pointer; he missed but was fouled, and went to the line for three free throws. Each made free throw is worth 1 point. Was it smart to foul?

1. What are all the possible ways the shots could fall (e.g. make-miss-miss, etc.)?

2. Darius Washington was a 72% free-throw shooter. Find the probability that Memphis will win, lose or go to overtime. When you have found the probabilities put them in the table in \#3.

Win	Lose	Overtime

Lesson 6.3: Day 1B: Is it smart to foul at the end of the game?

In the 2005 Conference USA men's basketball tournament, Memphis trailed Louisville by two points. At the buzzer, Memphis's Darius Washington attempted a 3-pointer; he missed but was fouled, and went to the line for three free throws. Each made free throw is worth 1 point. Was it smart to foul?

1. What are all the possible ways the shots could fall (e.g. make-miss-miss, etc.)?
```
\checkmark\checkmark \sqrt{ 人}{}
```

2. Darius Washington was a 72% free-throw shooter. Find the probability that Memphis will win, lose or go to overtime. When you have found the probabilities put them in the table in \#3.

Win	Lose	Overtime
3 makes $(72)(.72)(.72)$ $=373$	0 makes and 3 misses	2 makes and 1 miss
	1 make and 2 misses	

Lesson 6.3: Day 1B: Is it smart to foul at the end of the game?

In the 2005 Conference USA men's basketball tournament, Memphis trailed Louisville by two points. At the buzzer, Memphis's Darius Washington attempted a 3-pointer, he missed but was fouled, and went to the line for three free throws. Each made free throw is worth 1 point. Was it smart to foul?

1. What are all the possible ways the shots could fall (e.g. make-miss-miss, etc.)?

2. Darius Washington was a 72% free-throw shooter. Find the probability that Memphis will win, lose or go to overtime. When you have found the probabilities put them in the table in \#3.

Win	Lose	Overtime
3 makes $(72)(.72)(.72)$ $=8373$	0 makes and 3 misses $(28)(.28)(.28)$ 8	2 makes and 1 miss
	1 make and 2 misses	

Lesson 6.3: Day 1B: Is it smart to foul at the end of the game?

In the 2005 Conference USA men's basketball tournament, Memphis trailed Louisville by two points. At the buzzer, Memphis's Darius Washington attempted a 3-pointer, he missed but was fouled, and went to the line for three free throws. Each made free throw is worth 1 point. Was it smart to foul?

1. What are all the possible ways the shots could fall (e.g. make-miss-miss, etc.)?

2. Darius Washington was a 72% free-throw shooter. Find the probability that Memphis will win, lose or go to overtime. When you have found the probabilities put them in the table in \#3.

Lesson 6.3: Day 1B: Is it smart to foul at the end of the game?

In the 2005 Conference USA men's basketball tournament, Memphis trailed Louisville by two points. At the buzzer, Memphis's Darius Washington attempted a 3-pointer, he missed but was fouled, and went to the line for three free throws. Each made free throw is worth 1 point. Was it smart to foul?

1. What are all the possibie ways the shots couldfall (e.g. make-miss-miss, etc.)?

2. Darius Washington was a 72% free-throw shooter. Find the probability that Memphis will win, lose or go to overtime. When you have found the probapilities put them in the table in \#3.

3. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

AB	M.	Shots Remain.	Probability Memphis Win	Probability Memphis Lose	Probability Overtime
75	73				
75					
75					
7					

4. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
5. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

A	N	$\underbrace{\text { a }}_{\substack{\text { Shets } \\ \text { Remain }}}$	$\underset{\substack{\text { Probability } \\ \text { Memphis Win }}}{ }$	Probabily	$\underset{\substack{\text { Probability } \\ \text { Overime }}}{\text { ate }}$
75	${ }^{7}$	0	$=.373$	$\begin{aligned} & .022+.169 \\ & =0.191 \end{aligned}$	$=0.435$
75	74	-			
75		-			

4. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
5. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

6. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
7. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

	M	Shots Remain.	Probability Memphis Win	Probability Memphis Lose	Probability Overtime
75	73	0	$=.373$	$\begin{aligned} & 022+.169 \\ & =0.191 \end{aligned}$	$=0.435$
75	74	0	make make $(.72)^{2}=.5184$	misss miss	make musss or
75	74	-			

4. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
5. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

A	M	$\underbrace{\text { a }}_{\substack{\text { Sheots } \\ \text { Remain. }}}$	$\underbrace{\text { a }}_{\substack{\text { Probability } \\ \text { Memphis Win }}}$	${ }_{\text {Probabily }}^{\text {Pemphis }}$	$\underset{\substack{\text { Probability } \\ \text { Overime }}}{ }$
75	${ }^{7}$	0	$=.373$	$\begin{aligned} & .022+.169 \\ & =0.191 \end{aligned}$	$=0.435$
75	74	-	make make $(.72)^{2}=.9184$	$\begin{aligned} & \text { miss miss } \\ & (28)^{2}=.0789 \end{aligned}$	$\begin{aligned} & \text { make mivss or m } \\ & 2(-2)(.28) \end{aligned}$
75	74	-			

4. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
5. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

6. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
7. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

8. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
9. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

10. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?
11. Prior to watching each shot, calculate the probability that Memphis wins the game in regulation, loses the game in regulation, or sends the game into overtime.

12. Washington is a 40% 3-point shooter. Do you think Louisville was smart to foul? Why or why not?

MEMPHIS, March 12 - LOUISVILLE 75, MEMPHIS 74

The Memphis freshman Darius Washington slumped to the court, covering his head in anguish over his two missed free throws.

Nobody -- his coach, his teammates, even the player who fouled him -could console him.

Washington missed two of three free throws with no time left on the clock Saturday, allowing sixth-ranked Louisville to escape with a $75-74$ victory and the Conference USA championship.

Blood Type

Each child of a particular set of parents has probability 0.25 of having type O blood. Suppose these parents have 5 children.

What's the probability that exactly one of the five children has type O blood?

$$
\begin{aligned}
& P(X=1)=P(\text { exactly } 1 \text { child with type } \mathrm{O} \text { blood }) \\
& 5 C 1 \\
& P(X=K)=\left(\begin{array}{c}
\text { Hiways to get } \\
k \text { successes } \\
\text { in } n \text { trans }
\end{array}\right)\binom{\text { success }}{\text { probabrity }} \quad\binom{\text { failure }}{\text { probabiaty }}^{n-K}
\end{aligned}
$$

Binomial Probability Formula

Suppose that X is a binomial random variable with n trials and probability p of success on each trial. The probability of getting exactly k successes in n trials $(\mathrm{k}=0,1,2, \ldots, n)$ is

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

If X has a binomial distribution with parameters n and p, then:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

but formula for binomial coeffient is not shown.

$$
{ }_{n} C_{k}=\frac{n!}{k!(n-k)!}
$$

Red Light Green Light

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $\mathrm{Y}=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $Y=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
B
I
N

b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $Y=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
\leftrightarrow Success \rightarrow Red Light failure \rightarrow Not Red
N
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $Y=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
$B \begin{aligned} & \text { success } \rightarrow \text { Red Light } \\ & \text { failure } \rightarrow \text { Not Red I }\end{aligned}$

N S
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $\mathrm{Y}=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
B
success \rightarrow Red Light
failure \rightarrow Not Red
I
Each day
Independent
N

$n=10$
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $Y=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
$\left\{\begin{array}{l}\text { Success } \rightarrow \text { Red Light } \\ \text { failure } \rightarrow \text { Not Rec }\end{array}\right.$
I
Each day
Independent
N Set $\#$ trials
$S \quad P=0.55$
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light

Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $\mathrm{Y}=$ the number of times that the light is red.
a. Explain why Y is a binomial random variable.
$1 \begin{aligned} & \text { Success } \rightarrow \text { Red Light } \\ & \text { failure } \rightarrow \text { Not Red }\end{aligned}$
\square
Each day
Independent
N
 $S \quad P=055$
b. Find the probability that the light is red on exactly 7 days.

Red Light-Green Light
Pedro drives the same route to work on Monday through Friday. His route includes one traffic light. According to the local traffic department, there is a 55% chance that the light will be red on a randomly selected work day. Suppose we choose 10 of Pedro's work days at random and let $Y=$ the number of times that the light is red.

$$
\begin{aligned}
& \text { a. Explain why Y is a binomial random variable. } \\
& \begin{array}{l}
\text { success } \rightarrow \text { Red Light } \\
\text { failure } \rightarrow \text { Not Red }
\end{array} \\
& \begin{array}{l}
\text { Each day } \\
\text { Set } \# \text { trials } \\
n=10
\end{array}
\end{aligned}
$$

b. Find the probability that the light is red on exactly 7 days.

$$
P(Y=7)={ }_{10} C_{7} \bullet(.55)^{7} \bullet(.45)^{2}=.166
$$

Using technology

$\operatorname{binom} p d f(n, p, k)$
computes $P(X=k)$
last example $8 n=10$

$$
\begin{aligned}
& p=.55 \\
& k=7
\end{aligned}
$$

$$
\text { binompdf }(10,55,7)=
$$

Watch what happens if you leave out K 7

```
NORMAL FLOAT fUTO REAL DEGRE
```


binompdf

trials:10
P: . 55
\times value:
Paste

L1	L2
$3.4 E^{-4}$	$-2-$
.00416	
.02289	
.0746	
.15957	
.23403	
.23837	
.16648	
.0763	
.02072	
.00253	

Blood Type follow up
The preceding example tells us that each child of a particular set of parents has probability 0.25 of having type O blood. Suppose these parents have 5 children. Should the parents be surprised if more than 3 of their children have type O blood? Calculate an appropriate probability to support your answer.

$$
\begin{aligned}
P\left(x_{0}>3\right) & =P(x=4)+P(x=5) \\
& =\binom{5}{4}(0.2)^{4}(.75)^{1}+\binom{5}{5}(.25)^{5}(.75)^{0} \\
& =0.01465+.00098 \\
& =0.01563
\end{aligned}
$$

Because there is only about a 1.6 chance of having more than 3 children with Type O blood, the parents should definitely be surprised if it happens.

How to Find Binomial Probabilities

Step 1: state the distribution and the values of interest. Specify a binomial distribution with the number of trials n, success probability p, and the values of the variable clearly identified.

Step 2: Perform calculations-show your work! Do one of the following:
(i) Use the binomial probability formula to fin nd the desired probability; or
(ii) Use the binompdf or binomcdf command and label each of the inputs.

Be sure to answer the question that was asked.

Aussie Instant Lottery

Aussie instant lottery

The Australian Official Lottery has scratch-off instant lottery tickets that can be purchased for $\$ 1$. The probability of winning a prize is 1 in 4 .
(a) Mr. Urban is feeling lucky one day and decides to purchase 100 of the scratch-off instant lottery tickets. Find the probability that fewer than 20 tickets are winners.
(b) In fact, Mr. Urban won a prize for only 19 of the tickets. Does this result give convincing evidence that the probability of winning is less than 1 in 4 ?
a) Let $Y=$ the number of tickets that win a prize
Y has a binomial distribution with $n=100$ and $p=\frac{1}{4}$

$$
\begin{aligned}
& P(Y<20) \\
& =P(Y \leq 19) \\
& =P(0)+P(1)+P(2)+\ldots P(19) \\
& \left.=\text { binomcdf (trad le } 100 \frac{1}{4} \text { value } 19\right) \\
& =0.09953
\end{aligned}
$$

(b) If the prob. of winning is $1 \mathrm{in}^{4}$, there is a 0.09953 prob. that fewer than 20 of his 100 tickets win a prize. (this is Plausible)
Because it is plausible that Mr. Urban would win on 19 tickets purely by chance, we do not have convincing evidence that the prob of winning is less than 1 in 4 .
6.3.....77, 79, 80, 81, 83, 85, 89, 118 Study pp. 402-412

