Yesterday

We Analyzed what happens when a random variable is transformed.

What happens when two different random Variables are combined together stuff

When Combining Random Variables:

The means play nice

The standard deviations don't "play nice".

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. <u>Cedarlund</u> has finally decided on permanent employee wages which are randomly assigned using the probability distribution *X* given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution *Y* given below. Assume *X* and *Y* are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

X	9	12	15
Probability	0.30	0.45	0.25

Mean: Variance: Standard Deviation:

Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly raise.

Υ	\$1	\$3
Probability	0.70	0.30

Mean: _____ Variance: ____ Standard Deviation: _____

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. <u>Cedarlund</u> has finally decided on permanent employee wages which are randomly assigned using the probability distribution *X* given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution *Y* given below. Assume *X* and *Y* are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

)
$> \infty$ P:		
_ 111	\/	

X	9	12	15
Probability	0.30	0.45	0.25

Mean: Variance: Standard Deviation:

Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly raise.

Y	\$1	\$3
Probability	0.70	0.30

Mean: Variance: Standard Deviation:

Variance
$$\sigma_{x}^{2} = 5quare$$

Std Dev (X) = $\sigma_{x} = \sqrt{2}(x - \mu)^{2} \cdot P(x)$

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. <u>Cedarlund</u> has finally decided on permanent employee wages which are randomly assigned using the probability distribution *X* given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution *Y* given below. Assume *X* and *Y* are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

^	9	12	15
Probability	0.30	0.45	0.25

Mean: 11.85 Variance: 4.93 Standard Deviation: 2.22

Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly raise.

Y	\$1	\$3	
Probability	0.70	0.30	

Mean: 1.60 Variance: 839 Standard Deviation: 9/7

- 3. Let N = the new hourly wage for the upcoming year (X + Y).
 - a. What are all the possible new hourly wages for the new year?
 - b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show your work.
 - c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N			
Probability			

Mean:	Variance:	Standard Deviation:

- 3. Let N = the new hourly wage for the upcoming year (X + Y).
 - a. What are all the possible new hourly wages for the new year?

- b. What is the probability of an employee being assigned a \$9 wage **AND** a \$1 raise? Show your work.
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N			
Probability			

Mean:	Variance:	Standard Deviation:

3. Let N = the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap \$1) = P(\$9) \times P(\$1) = (30)(7) = .21$
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10			
Probability	.21			

Mean: _____ Variance: ____ Standard Deviation: ____

3. Let N = the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show your work. $P(\$9 \cap 1) = P(\$9) \times P(1) = (3)(7) = .21$
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	/3	15	16	18
Probability	.21					

Mean: Variance: Standard Deviation:

3. Let N = the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

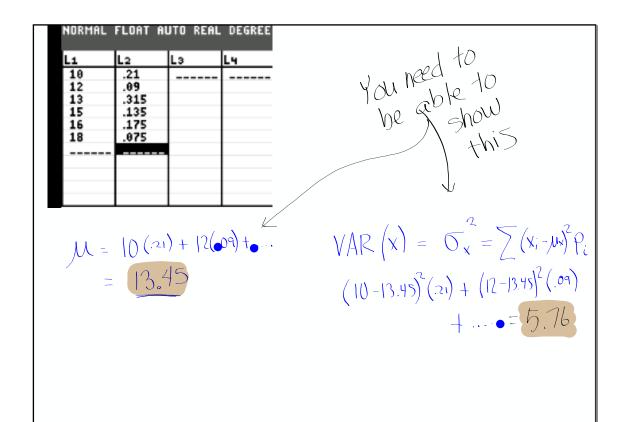
15+3 12+3

50 10,12,13,15,16,18

- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (3)(7) = 2$ your work.
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	13	15	16	18
Probability	.21	.09	.315	.135	.175	.075

Mean: _____ Variance: ____ Standard Deviation: ____



- 3. Let N = the new hourly wage for the upcoming year (X + Y).
 - a. What are all the possible new hourly wages for the new year?

9+1 9+3

15+3 12+3

50-10,12,13,15,16,18

- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (.30)(.7) = .21$ your work.
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	13	15	16	18
Probability	.21	.09	.315	.135	.175	.075

Mean: 3.45 Variance: 5.76 Standard Deviation: 2.40

d. If N=X+Y, complete the following in terms of X and Y: $\mu_N = \sigma_N = \frac{\sigma_N}{\sqrt{1 + \sigma_N}} = \frac{\sigma_N}{\sqrt{1 + \sigma_N$

Combining Probability Distributions

Important ideas: Adding & Subtracting Random Variables

Normal Probab. Distribution

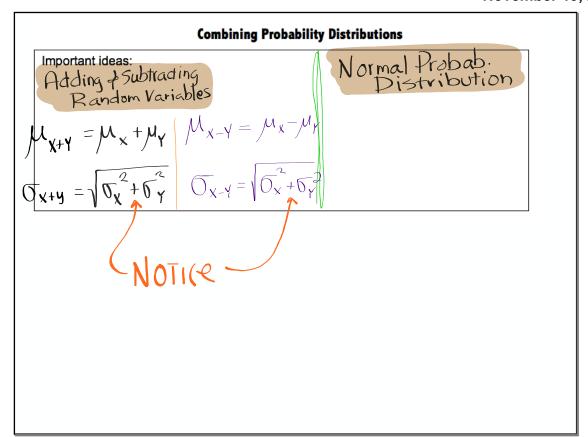
Combining Probability Distributions

Important ideas: Adding & Subtracting Random Variables

$$\mathcal{M}_{X+Y} = \mathcal{M}_{X} + \mathcal{M}_{Y}$$

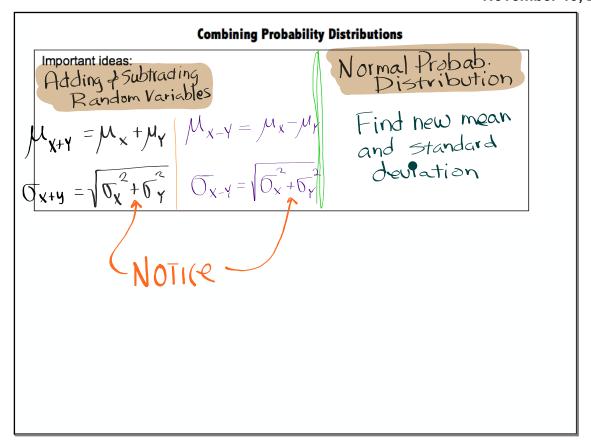
$$\mathcal{M}_{X-Y} = \mathcal{M}_{X} - \mathcal{M}_{Y}$$

Normal Probab. Distribution



CAUTION:

When we subtract two independent random variables, their variances add.



A large auto dealership keeps track of sales and lease agreements made during each hour of the day. Let X = the number of cars sold and Y = the number of cars leased during the first hour of business on a randomly selected Friday. Based on previous records, the probability distributions of X and Y are as follows:

	Cars sold <i>x_i</i> Probability <i>p_i</i>	0 0.3	1 0.4	2 0.2	3 0.1	
Me	an: $\mu_{\rm X} = 1.1$	Standard	deviat	ion: $\sigma_{ m X}$	= 0.0	943
	Cars leased y _i	0	1	2		
	Probability p _i	0.4	0.5	0.1		

Define T = X + Y. Assume that X and Y are independent.

- 1. Find and interpret μ_T .
- 2. Calculate and interpret σ_T .

A large auto dealership keeps track of sales and lease agreements made during each hour of the day. Let X = the number of cars sold and Y = the number of cars leased during the first hour of business on a randomly selected Friday. Based on previous records, the probability distributions of X and Y are as follows:

Define T = X + Y. Assume that X and Y are independent.

- 1. Find and interpret μ_T . $\mu_T = 1.1 + 0.7 = 8$ cars

 Over many many Fridays, the dealer expects to sell and lease about 1.8 cars on average
- 2. Calculate and interpret σ_T . $O_T = \sqrt{0_x + 0_y^2} = \sqrt{0_y + 0_y^2} = 1.14$ cars

 The number of cars sold and leased typically vary by

 1.14 cars from the mean (1.8 cars).

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus *B*.

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus *B*.

$$\mu_{B} = 500(4) + 300(.7)$$

$$= 550 + 210$$

$$= $760$$

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus *B*.

$$\sigma_{B} = \left(500 \cdot .943\right)^{2} + \left(300 \cdot .64\right)^{2}$$

$$= 4509 \cdot 09$$

Hoop Fever 1 (Mean of a sum or difference of random variables)

Hoop Fever is an arcade basketball game in which a player has 60 seconds to make as many baskets as possible. Morgan and Tim play head-to-head every Tuesday. Let \underline{M} = the number of baskets made by Morgan and T = the number of baskets made by Tim in a randomly selected match.

A. Based on previous matches, we know that $\mu_M = 39.8$ and $\mu_T = 31.2$. Let D = M - T. Calculate and interpret the mean of D.

Hoop Fever 1 (Mean of a sum or difference of random variables)

Hoop Fever is an arcade basketball game in which a player has 60 seconds to make as many baskets as possible. Morgan and Tim play head-to-head every Tuesday. Let \underline{M} = the number of baskets made by Morgan and T = the number of baskets made by Tim in a randomly selected match.

A. Based on previous matches, we know that $\mu_M = 39.8$ and $\mu_T = 31.2$. Let D = M - T. Calculate and interpret the mean of D.

MD = MM - MT = 39.8-31.2 = 8.6 baskets

The difference (Morgan-Tim) in the number of baskets, on average, over many randomly selected matches. is 8.6 baskets

B. Based on previous matches, we know also that the **standard deviations** are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M - T. Earlier, we found that $\mu_D = 8.6$.

Calculate and interpret the standard deviation of D.

B. Based on previous matches, we know also that the standard deviations are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M - T. Earlier, we found that $\mu_D = 8.6$.

 $\sqrt{N^2}$ Calculate and interpret the <u>standard deviation</u> of *D*.

Calculate and interpret the standard deviation of D.

$$\sigma_D^2 = \sigma_M^2 + \sigma_{\dagger}^2 = 5.7^2 + 10.3^2 = 138.58$$

- B. Based on previous matches, we know also that the standard deviations are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M T. Earlier, we found that $\mu_D = 8.6$.
- Variables $\int_{0}^{2} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = \int_{0}^{2} \frac{1}{\sqrt{2}} + \int_{0.3}^{2} \frac{1}{\sqrt{2}} = 138.58$

B. Based on previous matches, we know also that the standard deviations are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M - T. Earlier, we found that $\mu_D = 8.6$.

 $\mathcal{L}_{\mathcal{A}}$ Calculate and interpret the <u>standard deviation</u> of *D*.

$$\sigma_{\rm D}^2 = \sigma_{\rm M}^2 + \sigma_{\rm T}^2 = 5.7^2 + 10.3^2 = 138.58$$

The difference (Morgan - Tim) in the number of baskets made varies by about 11.77 baskets from the difference in means of 866 baskets.

Now Normal Distribution

- Suppose that T = the number of baskets made by **Tim** in a randomly selected match <u>follows an</u> <u>approximately Normal distribution</u> with $\mu_{M} = 31.2$ and $\sigma_{T} = 10.3$. Assume that these two random variables are independent and define D = M T.
 - (a) Describe the distribution of D.

h

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

Suppose that T = the number of baskets made by **Tim** in a randomly selected match follows an <u>approximately Normal distribution</u> with $\mu_{M}=31.2$ and $\sigma_{T}=10.3$. Assume that these two random variables are independent and define D = M - T.

(a) Describe the distribution of D.

Shape -Center - Variability -

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

Suppose that T = the number of baskets made by **Tim** in a randomly selected match follows an <u>approximately Normal distribution</u> with $\mu_{\scriptscriptstyle M}=31.2$ and $\sigma_{\scriptscriptstyle T}=10.3$. Assume that these two random variables are independent and define D = M - T.

(a) Describe the distribution of p.

Shape - Approximately normal

Center - $M_D = 39.8 - 31.2 = 8.6$ baskets

Variability - $O_D = \sqrt{57^2 + 10.3^2} = 11.77$ baskets

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

Morgan will win if D = M-T > 0

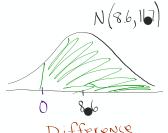
N(86,16)

866
Difference

 $\mathcal{N}^{-}\mathcal{T}$

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

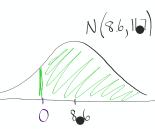
Morgan will win if D = M-T>0



Difference

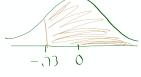
(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected

Morgan will win if D = M-T >0



$$Z = \frac{0 - 86}{11.77} = -0.73$$

Difference



normal cdf (LOW upper means so:)

normal cdf (LOW. -. 73 upper | 1000 means () SD: |)

Any number

5 5 5 D 2 0.7673

6.249, 51, 55, 57, 59,

65, 67, 73-74

study pp. 388-397 including the example